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Fig. 18. (a) Measured frequency and energy in BCAM mode against Vdd_Lo, with Vdd = 1 V. (b) Measured frequency and energy in BCAM mode against
Vdd, with Vdd_Lo = 0.5∗Vdd. All measurements taken at room temperature.

Fig. 19. (a) Measured frequency and energy in TCAM mode against Vdd_Lo, with Vdd = 1 V. (b) Measured frequency and energy in TCAM mode against
Vdd, with Vdd_Lo = 0.5∗Vdd. All measurements taken at room temperature.

Fig. 22. Measured frequency for logic operation between two words in memory against Vdd_Lo, with fixed Vdd (Vdd = 0.9 V and Vdd = 1 V) at room
temperature.
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TABLE III
COMPARISON WITH PREVIOUS BCAM WORKS

∗From die-photo.

TABLE IV
COMPARISON WITH PREVIOUS TCAM WORKS

∗ Bit cell area calculated from density, assuming array efficiency of 40%. Reference [3] cites [18] as
its previous work. The array efficiency for [18] is 43%. From details in [3] and [18], we conservatively
estimate [3] to have an array efficiency of ∼ 40%.
∗∗Scaling trend of push-rule SRAM according to ISSCC trends [23]— 124f2 at 65 nm but at 28 nm it is
162f2. Also, from the layout figure in [18] the bit cell uses two 6T cells plus the additional 4 transistors.
From the layout figure shown, this bit cell is estimated to be 1.35× the size of the proposed TCAM bit
cell (two 6T cells).

in TCAM is higher as the total number of bits is half, but in
TCAM only half the sense-amplifiers and output latches are
used. The minimum energy point is 0.61 fJ, with a frequency of
116 MHz at Vdd = 0.75 V and Vdd_Lo = 0.375 V, as seen in
Fig. 19(b).

In Fig. 20, a shmoo plot is shown with Vdd on the x-axis
and Vdd_Lo on the y-axis. As discussed earlier, Vdd_Lo has a
two-sided constraint. The red tiles are voltage pairs where the
BCAM fails, whereas the numbers in the passing green tiles
are the operating frequency. If Vdd_Lo is high, speed is better,
but as the access transistor becomes stronger, the probability of
disturb goes up, and hence failures start to be seen in the upper
left triangle. The failures below 0.325 Vdd_Lo are due to the

SA read resolution, i.e., the design cannot reliably resolve the
single-mismatch case for every column.

Fig. 21 shows the Vdd_Lo operational voltage margin dis-
tribution across multiple chips. Vdd_Lo_margin is the voltage
range of Vdd_Lo over which the CAM is functional. At nom-
inal Vdd, the Vdd_Lo_margin across 10 chips has a mean
of 180 mV as shown in the bar graph on the left. Thus, a
reasonable margin for CAM operations is available. The mean
of the max frequency in BCAM mode across chips is about
365 MHz as shown on the right.

The max frequency in SRAM mode is about 900 MHz at 0.9
V, as it is not affected by Vdd_Lo because the word-lines are
driven to nominal voltage in SRAM mode. Fig. 22 shows the
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Fig. 20. Measured shmoo plot of Vdd_Lo versus VDD for BCAM. Numbers
in box are frequency in MHz. All measurements taken at room temperature.

Fig. 21. Measured Vdd_Lo margin and max frequency across 10 chips.
The histograms are for following operating conditions: Vdd = 1 V and
Vdd_Lo = 0.5 V at room temperature.

operational frequency for logic operation between two words
stored row-wise in the memory. The logic in memory mode
is similar to BCAM search operation and hence its frequency
is also a function of both Vdd and Vdd_Lo. On the x-axis of
the graph in Fig. 22, Vdd_Lo is swept, keeping Vdd fixed.
As explained in Section V-B, the search disturb is less pro-
nounced in the logic mode than in the BCAM mode where all
rows are activated. For two-word logic mode at Vdd = 1 V,
the Vdd_Lo can be increased to 0.85 V, allowing it to achieve a
maximum frequency of 787 MHz as compared to the BCAM’s
400 MHz. Compared to the 900 MHz for SRAM mode at
Vdd = Vdd_Lo = 0.9 V, the logic mode achieves a maximum
frequency of 594 MHz at Vdd = 0.9 V and Vdd_Lo = 0.75 V.
The frequency loss in logic mode compared to the SRAM mode
is because of, first, lower word-line voltage and, second, slower
SA as logic mode uses single-ended sensing mode.

In Table III, our design is compared against other more con-
ventional BCAMs, while in Table IV, we compare against other
conventional TCAMs. All the conventional BCAMs have a
higher transistor count in their bit cells. If the area normalized
for technology in F 2 (F being feature size) is compared, the
gain is by more than 4×. Even the push-rule TCAM bit-cell

is 1.35× larger than our proposed TCAM bit cell. The energy
efficiency achieved is good at 0.41 fJ/search/bit at 0.75 V
for BCAM. Also, configurability is possible between different
operating modes.

VIII. CONCLUSION

A configurable memory with CAM functionality using stan-
dard push-rule SRAM 6T bit cells is presented. This memory
can be used as an area-energy efficient CAM in search-based
applications. It also has lower instantaneous power because of
low voltage word-line drive. The memory can also be used to
perform certain logic operations between two or more rows.
This can be used to off-load computations to the memory,
improving system performance.

The proposed configurable memory with logic-in-memory
has an energy efficiency of 0.6 fJ/search/bit at 1 V with an array
bit density of ∼ 5.4 Mb/mm2 which is a 4× improvement in
array density over conventional BCAMs. This is achieved with
only 7% area overhead for configurability over a conventional
SRAM. The logic-in-memory operations between two 64 bit
words in the configurable memory, achieves 787 MHz at 1 V.
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