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Abstract—Duplicate detection is the process of identifying multiple representations of same real world entities. Today, duplicate

detection methods need to process ever larger datasets in ever shorter time: maintaining the quality of a dataset becomes

increasingly difficult. We present two novel, progressive duplicate detection algorithms that significantly increase the efficiency

of finding duplicates if the execution time is limited: They maximize the gain of the overall process within the time available by

reporting most results much earlier than traditional approaches. Comprehensive experiments show that our progressive algorithms

can double the efficiency over time of traditional duplicate detection and significantly improve upon related work.

Index Terms—Duplicate detection, entity resolution, pay-as-you-go, progressiveness, data cleaning
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1 INTRODUCTION

DATA are among the most important assets of a com-
pany. But due to data changes and sloppy data entry,

errors such as duplicate entries might occur, making data
cleansing and in particular duplicate detection indispens-
able. However, the pure size of today’s datasets render
duplicate detection processes expensive. Online retailers,
for example, offer huge catalogs comprising a constantly
growing set of items from many different suppliers. As
independent persons change the product portfolio, dupli-
cates arise. Although there is an obvious need for dedupli-
cation, online shops without downtime cannot afford
traditional deduplication.

Progressive duplicate detection identifies most duplicate
pairs early in the detection process. Instead of reducing the
overall time needed to finish the entire process, progressive
approaches try to reduce the average time after which a
duplicate is found. Early termination, in particular, then
yields more complete results on a progressive algorithm
than on any traditional approach.

As a preview of Section 8.3, Fig. 1 depicts the number of
duplicates found by three different duplicate detection algo-
rithms in relation to their processing time: The incremental
algorithm reports new duplicates at an almost constant fre-
quency. This output behavior is common for state-of-the-art
duplicate detection algorithms. In this work, however, we
focus on progressive algorithms, which try to report most
matches early on, while possibly slightly increasing their
overall runtime. To achieve this, they need to estimate the
similarity of all comparison candidates in order to compare
most promising record pairs first.

With the pair selection techniques of the duplicate detec-
tion process, there exists a trade-off between the amount of
time needed to run a duplicate detection algorithm and the

completeness of the results. Progressive techniques make
this trade-off more beneficial as they deliver more complete
results in shorter amounts of time. Furthermore, they
make it easier for the user to define this trade-off, because
the detection time or result size can directly be specified
instead of parameters whose influence on detection time
and result size is hard to guess. We present several use cases
where this becomes important:

1) A user has only limited, maybe unknown time for data
cleansing and wants to make best possible use of it.
Then, simply start the algorithm and terminate it
when needed. The result size will be maximized.

2) A user has little knowledge about the given data but
still needs to configure the cleansing process. Then,
let the progressive algorithm choose window/block
sizes and keys automatically.

3) A user needs to do the cleaning interactively to, for
instance, find good sorting keys by trial and error.
Then, run the progressive algorithm repeatedly;
each run quickly reports possibly large results.

4) A user has to achieve a certain recall. Then, use the
result curves of progressive algorithms to estimate
how many more duplicates can be found further; in
general, the curves asymptotically converge against
the real number of duplicates in the dataset.

We propose two novel, progressive duplicate detec-
tion algorithms namely progressive sorted neighborhood
method (PSNM), which performs best on small and
almost clean datasets, and progressive blocking (PB), which
performs best on large and very dirty datasets. Both
enhance the efficiency of duplicate detection even on
very large datasets. In comparison to traditional dupli-
cate detection, progressive duplicate detection satisfies
two conditions [1]:

Improved early quality. Let t be an arbitrary target time at
which results are needed. Then the progressive algorithm
discovers more duplicate pairs at t than the corresponding
traditional algorithm. Typically, t is smaller than the overall
runtime of the traditional algorithm.

Same eventual quality. If both a traditional algorithm and
its progressive version finish execution, without early termi-
nation at t, they produce the same results.
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Given any fixed-size time slot in which data cleansing is
possible, progressive algorithms try to maximize their effi-
ciency for that amount of time. To this end, our algorithms
PSNM and PB dynamically adjust their behavior by auto-
matically choosing optimal parameters, e.g., window sizes,
block sizes, and sorting keys, rendering their manual speci-
fication superfluous. In this way, we significantly ease the
parameterization complexity for duplicate detection in gen-
eral and contribute to the development of more user interac-
tive applications: We can offer fast feedback and alleviate
the often difficult parameterization of the algorithms. In
summary, our contributions are the following:

� We propose two dynamic progressive duplicate detec-
tion algorithms, PSNM and PB, which expose differ-
ent strengths and outperform current approaches.

� We introduce a concurrent progressive approach for
the multi-pass method and adapt an incremental
transitive closure algorithm that together form the
first complete progressive duplicate detection workflow.

� We define a novel quality measure for progressive
duplicate detection to objectively rank the perfor-
mance of different approaches.

� We exhaustively evaluate on several real-world data-
sets testing our own and previous algorithms.

The duplicate detection workflow comprises the three
steps pair-selection, pair-wise comparison, and clustering.
For a progressive workflow, only the first and last
step need to be modified. Therefore, we do not investigate
the comparison step and propose algorithms that are
independent of the quality of the similarity function. Our
approaches build upon the most commonly used meth-
ods, sorting and (traditional) blocking, and thus make
the same assumptions: duplicates are expected to be
sorted close to one another or grouped in same buckets,
respectively.

Paper organization. Section 2 examines related work. Sec-
tions 3 and 4 introduce the PSNM and the PB algorithm,
which progressively find duplicates based on windowing
and blocking techniques, respectively. Section 5 contributes
the Attribute Concurrency multi-pass strategy, which
enables PSNM and PB to automatically choose good key
attributes. We discuss the incremental transitive closure cal-
culation in Section 6 and define a novel quality measure for
progressiveness in Section 7. Section 8 comprehensively
evaluates our algorithms, showing that they can double the
efficiency of traditional duplicate detection algorithms.
Section 9 concludes this paper and discusses future work.

2 RELATED WORK

Much research on duplicate detection [2], [3], also known as
entity resolution and by many other names, focuses on pair-
selection algorithms that try to maximize recall on the one
hand and efficiency on the other hand. The most prominent
algorithms in this area are Blocking [4] and the sorted neigh-
borhood method (SNM) [5].

Adaptive techniques. Previous publications on duplicate
detection often focus on reducing the overall runtime.
Thereby, some of the proposed algorithms are already capa-
ble of estimating the quality of comparison candidates [6],
[7], [8]. The algorithms use this information to choose the
comparison candidates more carefully. For the same reason,
other approaches utilize adaptive windowing techniques,
which dynamically adjust the window size depending on
the amount of recently found duplicates [9], [10]. These
adaptive techniques dynamically improve the efficiency of
duplicate detection, but in contrast to our progressive tech-
niques, they need to run for certain periods of time and can-
not maximize the efficiency for any given time slot.

Progressive techniques. In the last few years, the economic
need for progressive algorithms also initiated some concrete
studies in this domain. For instance, pay-as-you-go algo-
rithms for information integration on large scale datasets
have been presented [11]. Other works introduced progres-
sive data cleansing algorithms for the analysis of sensor
data streams [12]. However, these approaches cannot be
applied to duplicate detection.

Xiao et al. proposed a top-k similarity join that uses a
special index structure to estimate promising comparison
candidates [13]. This approach progressively resolves dupli-
cates and also eases the parameterization problem.
Although the result of this approach is similar to our
approaches (a list of duplicates almost ordered by similar-
ity), the focus differs: Xiao et al. find the top-k most similar
duplicates regardless of how long this takes by weakening
the similarity threshold; we find as many duplicates as pos-
sible in a given time. That these duplicates are also the most
similar ones is a side effect of our approaches.

Pay-As-You-Go Entity Resolution by Whang et al. intro-
duced three kinds of progressive duplicate detection tech-
niques, called “hints” [1]. A hint defines a probably good
execution order for the comparisons in order to match
promising record pairs earlier than less promising record
pairs. However, all presented hints produce static orders
for the comparisons and miss the opportunity to dynami-
cally adjust the comparison order at runtime based on
intermediate results. Some of our techniques directly
address this issue. Furthermore, the presented duplicate
detection approaches calculate a hint only for a specific
partition, which is a (possibly large) subset of records
that fits into main memory. By completing one partition
of a large dataset after another, the overall duplicate
detection process is no longer progressive. This issue is
only partly addressed in [1], which proposes to calculate
the hints using all partitions. The algorithms presented in
our paper use a global ranking for the comparisons and
consider the limited amount of available main memory.
The third issue of the algorithms introduced by Whang
et al. relates to the proposed pre-partitioning strategy:

Fig. 1. Duplicates pairs found by an incremental and our two progressive
algorithms (see Section 8.3).
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By using minhash signatures [14] for the partitioning,
the partitions do not overlap. However, such an overlap
improves the pair-selection [15], and thus our algorithms
consider overlapping blocks as well. In contrast to [1],
we also progressively solve the multi-pass method and
transitive closure calculation, which are essential for a
completely progressive workflow. Finally, we provide a
more extensive evaluation on considerably larger datasets
and employ a novel quality measure to quantify the per-
formance of our progressive algorithms.

Additive techniques. By combining the sorted neighbor-
hood method with blocking techniques, pair-selection algo-
rithms can be built that choose the comparison candidates
much more precisely. The Sorted Blocks algorithm [15], for
instance, applies blocking techniques on a set of input
records and then slides a small window between the differ-
ent blocks to select additional comparison candidates. Our
progressive PB algorithm also utilizes sorting and blocking
techniques; but instead of sliding a window between blocks,
PB uses a progressive block-combination technique, with
which it dynamically chooses promising comparison candi-
dates by their likelihood of matching.

The recall of blocking and windowing techniques can
further be improved by using multi-pass variants [5]. These
techniques use different blocking or sorting keys in multi-
ple, successive executions of the pair-selection algorithm.
Accordingly, we present progressive multi-pass approaches
that interleave the passes of different keys.

3 PROGRESSIVE SNM

The progressive sorted neighborhood method is based on the tra-
ditional sorted neighborhood method [5]: PSNM sorts the input
data using a predefined sorting key and only compares
records that are within a window of records in the sorted
order. The intuition is that records that are close in the
sorted order are more likely to be duplicates than records
that are far apart, because they are already similar with
respect to their sorting key. More specifically, the distance
of two records in their sort ranks (rank-distance) gives
PSNM an estimate of their matching likelihood. The PSNM
algorithm uses this intuition to iteratively vary the window
size, starting with a small window of size two that quickly
finds the most promising records. This static approach has
already been proposed as the sorted list of record pairs
(SLRPs) hint [1]. The PSNM algorithm differs by dynami-
cally changing the execution order of the comparisons
based on intermediate results (Look-Ahead). Furthermore,
PSNM integrates a progressive sorting phase (MagpieSort)
and can progressively process significantly larger datasets.

3.1 PSNM Algorithm

Algorithm 1 depicts our implementation of PSNM. The algo-
rithm takes five input parameters:D is a reference to the data,
which has not been loaded from disk yet. The sorting key K
defines the attribute or attribute combination that should be
used in the sorting step. W specifies the maximum window
size, which corresponds to the window size of the traditional
sorted neighborhood method. When using early termination,
this parameter can be set to an optimistically high default
value. Parameter I defines the enlargement interval for the

progressive iterations. Section 3.2 describes this parameter in
more detail. For now, assume it has the default value 1. The
last parameter N specifies the number of records in the data-
set. This number can be gleaned in the sorting step, but we list
it as a parameter for presentation purposes.

Algorithm 1. Progressive Sorted Neighborhood

Require: dataset reference D, sorting key K, window size
W, enlargement interval size I, number of records N

1: procedure PSNM(D, K,W, I, N)
2: pSize calcPartitionSize(D)
3: pNum N=ðpSize �W þ 1Þd e
4: array order size N as Integer
5: array recs size pSize as Record
6: order sortProgressive(D, K, I, pSize, pNum)
7: for currentI 2 to W=Id e do
8: for currentP 1 to pNum do
9: recs loadPartition(D, currentP)
10: for dist 2 range(currentI, I,W) do
11: for i 0 to recsj j � dist do
12: pair recs½i�; recs½i þ dist�h i
13: if compare(pair) then
14: emit(pair)
15: lookAhead(pair)

In many practical scenarios, the entire dataset will not fit
in main memory. To address this, PSNM operates on a parti-
tion of the dataset at a time. The PSNM algorithm calculates
an appropriate partition size pSize, i.e., the maximum num-
ber of records that fit in memory, using the pessimistic sam-
pling function calcPartitionSize(D) in Line 2: If the data is
read from a database, the function can calculate the size of a
record from the data types and match this to the available
main memory. Otherwise, it takes a sample of records and
estimates the size of a record with the largest values for
each field. In Line 3, the algorithm calculates the number of
necessary partitions pNum, while considering a partition
overlap of W � 1 records to slide the window across their
boundaries. Line 4 defines the order-array, which stores the
order of records with regard to the given key K. By storing
only record IDs in this array, we assume that it can be kept
in memory. To hold the actual records of a current partition,
PSNM declares the recs-array in Line 5.

In Line 6, PSNM sorts the dataset D by key K. The
sorting is done by applying our progressive sorting algo-
rithm Magpie, which we explain in Section 3.2. After-
wards, PSNM linearly increases the window size from 2
to the maximum window size W in steps of I (Line 7). In
this way, promising close neighbors are selected first and
less promising far-away neighbors later on. For each of
these progressive iterations, PSNM reads the entire dataset
once. Since the load process is done partition-wise,
PSNM sequentially iterates (Line 8) and loads (Line 9) all
partitions. To process a loaded partition, PSNM first iter-
ates overall record rank-distances dist that are within the
current window interval currentI. For I ¼ 1 this is only
one distance, namely the record rank-distance of the cur-
rent main-iteration. In Line 11, PSNM then iterates all
records in the current partition to compare them to their
dist-neighbor. The comparison is executed using the com-
pare(pair) function in Line 13. If this function returns
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“true”, a duplicate has been found and can be emitted.
Furthermore, PSNM evokes the lookAhead(pair) method,
which we explain later, to progressively search for more
duplicates in the current neighborhood. If not terminated
early by the user, PSNM finishes when all intervals have
been processed and the maximum window size W has
been reached.

3.2 Progressiveness Techniques

Window interval. PSNM needs to load all records in each
progressive iteration and loading partitions from disk is
expensive. Therefore, we introduced the window enlargement
interval I in Line 7 and 10. It defines how many dist-itera-
tions PSNM should execute on each loaded partition. For
instance, if we set I ¼ 3, the algorithm loads the first parti-
tion to sequentially execute the rank-distances 1 to 3, then it
loads the second partition to execute the same interval and
so on until all partitions have been loaded once. Afterwards,
all partitions are loaded again to run dist 4 to 6 and so forth.
This strategy reduces the number of load processes. How-
ever, the theoretical progressiveness decreases as well,
because we execute comparisons with a lower probability
of matching earlier. So I constitutes a trade-off parameter
that balances progressiveness and overall runtime.

Partition caching. As we cannot assume the input to be
physically sorted, the algorithm needs to repeatedly re-
iterate the entire file searching for the records of the next
partition, which contains the currently most promising com-
parison candidates. So, all records need to be read when
loading the next partition. To overcome this issue, we
implemented Partition Caching within the loadPartition(D,
currentP) function in Line 9: If a partition is read for the first
time, the function collects the requested records from the
input dataset and materializes them to a new, dedicated
cache file on disk. When the partition is later requested
again, the function loads it from this cache file, reducing the
costs for PSNM’s additional I/O operations (and for possi-
ble parsing efforts on the file-input).

Look-ahead. After sorting the input dataset, we find areas
of high and low duplicate density, particularly if duplicates
occur in larger clusters, i.e., groups of records that are all
pair-wise duplicates. The Look-Ahead strategy uses this
observation to adjust the ranking of comparison candidates
at runtime: If record pair ði; jÞ has been identified as a dupli-
cate, then the pairs ði þ 1; jÞ and ði; j þ 1Þ have a high chance
of being duplicates of the same cluster. Therefore, PSNM
immediately compares them instead of waiting for the next
progressive iteration. If one of the look-ahead comparisons
detects another duplicate, a further look-ahead is recursively
executed. In this way, PSNM iterates larger neighborhoods
around duplicates to progressively reveal entire clusters. To
avoid redundant comparisons in different look-aheads or in
a following progressive iteration, PSNM maintains all exe-
cuted comparisons in a temporary data structure. This
behavior is implemented by the lookAhead(pair) function in
Line 15 of our PSNM implementation. Since the look-ahead
works recursively, it may perform comparisons that are
beyond the given maximum window size W. Hence, it can
find duplicates that cannot be found by the traditional
Sorted Neighborhood Method. For easier comparison, we
limited the maximum look-ahead rank-distance to W in our

evaluation. In summary, PSNM automatically prefers locally
promising comparisons in the otherwise static execution
order by adaptively comparing record pairs in the neighbor-
hood of previously detected duplicates.

MagpieSort. The sorting of records is a blocking prepro-
cessing step that we can already use to (progressively) exe-
cute some first comparisons. MagpieSort is a na€ıve sorting
algorithm that works similar to SelectionSort. The name of
this algorithm is inspired by the larcenous bird that collects
beautiful things while only being able to carry a few of
them at once. MagpieSort repeatedly iterates overall records
to find the currently top-x smallest ones. Thereby, it inserts
each record into a sorted buffer of length x. If the buffer is
full, each newly inserted record displaces the largest record
from the list. After each iteration, the final order can be sup-
plemented by the next top x records from the buffer. A
record that has been emitted once will not be emitted again.
So for N records, the algorithm terminates after N

x

� �
itera-

tions yielding the final order of records. As each pass over
the input dataset delivers a partition of appropriately sorted
records, we can directly execute some promising compari-
sons on them. In fact, MagpieSort integrates the entire first
progressive iteration of PSNM. Overall, this sorting strategy
generates only a small overhead, because the algorithm
needs to iterate over the entire dataset anyway whenever a
partition needs to be read from disk.

Load-compare parallelism. The PSNM algorithm consists of
two continuously alternating phases: A load phase, in
which PSNM reads a partition of records from disk into
main memory, and a compare phase, in which PSNM exe-
cutes comparisons on the current partition. The load phase
frequently blocks the algorithm’s progress and reduces its
progressiveness. To avoid this blocking behavior, we pro-
pose to parallelize the two phases and then use double buff-
ering for the partitions. In this way, PSNM can hide data
access latencies by simultaneously executing comparisons.
Our implementation of this idea, which we call Load-
Compare Parallelism, uses two worker-threads: a Loader and
a Comparator. It also requires one partition for each worker.
Since both partitions need to reside in memory at the same
time, each of them can only be half the size of the overall
available memory. So we define the recs-array twice with
half of its original size. The PSNM algorithm then runs
Lines 2 to 9 in the Loader thread and Lines 10 to 15 in the
Comparator thread.

4 PROGRESSIVE BLOCKING

In contrast to windowing algorithms, blocking algorithms
assign each record to a fixed group of similar records (the
blocks) and then compare all pairs of records within these
groups. Progressive blocking is a novel approach that
builds upon an equidistant blocking technique and the
successive enlargement of blocks. Like PSNM, it also pre-
sorts the records to use their rank-distance in this sorting
for similarity estimation. Based on the sorting, PB first
creates and then progressively extends a fine-grained
blocking. These block extensions are specifically executed
on neighborhoods around already identified duplicates,
which enables PB to expose clusters earlier than PSNM.
Sections 8.3 and 8.4 directly compare the performance of
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PB and PSNM showing that PB is indeed preferable for
datasets containing many large duplicate clusters.

4.1 PB Intuition

Fig. 2 illustrates how PB chooses comparison candidates
using the block comparison matrix. To create this matrix, a
preprocessing step has already sorted the records that form
the Blocks 1-8 (depicted as vertical and horizontal axes).
Each block within the block comparison matrix represents
the comparisons of all records in one block with all records
in another block. For instance, the field in the 4th row and
the 5th column represents the comparisons of all records in
Block 4 with all records in Block 5. Assuming a symmetric
similarity measure, we can ignore the bottom left part of the
matrix. The exemplary number of found duplicates is
depicted in the according fields. In this example, the block
comparison ð4; 5Þ delivered nine duplicates. Because of the
equidistant blocking, all blocks have the same size. This
eases the progressive extension process that we describe in
the following. Only the last block might be smaller, if the
dataset is not divisible by the desired block size.

In the initial run, PB defines the blocking and executes all
comparisons within each block. For the first progressive
iteration, the algorithm then selects those block pairs that
delivered the most duplicates in the initial run. In the exam-
ple, these are the block pairs ð2; 2Þ and ð5; 5Þ. Because these
two block pairs represent the areas with the currently high-
est duplicate density, the PB algorithm chooses ð1; 2Þ and
ð2; 3Þ to progressively extend the first block pair and ð4; 5Þ
and ð5; 6Þ to extend the second block pair. Having compared
the four new block pairs, PB starts the second iteration. In
this iteration, ð4; 5Þ and ð5; 6Þ are the best block pairs and,
hence, extended. The results of this iteration then influences
the third iteration and so on. In this way, PB dynamically
processes those neighborhoods that are expected to contain
most new duplicates. In case of ties, the algorithm prefers
block pairs with a smaller rank-distance, because the dis-
tance in the sort rank still defines the expected similarity of
the records. The extensions continue until all blocks have
been compared or a distance threshold for all remaining
block pairs has been reached.

4.2 PB Algorithm

Algorithm 2 lists our implementation of PB. The algorithm
accepts five input parameters: The dataset reference D
specifies the dataset to be cleaned and the key attribute or

key attribute combination K defines the sorting. The param-
eter R limits the maximum block range, which is the maxi-
mum rank-distance of two blocks in a block pair, and S
specifies the size of the blocks. We discuss appropriate val-
ues for R and S in the next section. Finally, N is the size of
the input dataset.

Algorithm 2. Progressive Blocking

Require: dataset reference D, key attribute K, maximum
block range R, block size S and record number N

1: procedure PB(D, K, R, S, N)
2: pSize calcPartitionSize(D)
3: bPerP pSize=Sb c
4: bNum N=Sd e
5: pNum bNum=bPerPd e
6: array order size N as Integer
7: array blocks size bPerP as Integer;Record½ �h i
8: priority queue bPairs as Integer; Integer; Integerh i
9: bPairs 1; 1;h i; . . . ; bNum; bNum;h if g
10: order sortProgressive(D, K, S, bPerP, bPairs)
11: for i 0 to pNum � 1 do
12: pBPs get(bPairs, i � bPerP, (i þ 1) � bPerP)
13: blocks loadBlocks(pBPs, S, order)
14: compare(blocks, pBPs, order)
15: while bPairs is not empty do
16: pBPs fg
17: bestBPs takeBest( bPerP=4b c, bPairs, R)
18: for bestBP 2 bestBPs do
19: if bestBP[1] � bestBP[0] < R then
20: pBPs pBPs [ extend(bestBP)
21: blocks loadBlocks(pBPs, S, order)
22: compare(blocks, pBPs, order)
23: bPairs bPairs [ pBPs
24: procedure compare(blocks, pBPs, order)
25: for pBP 2 pBPs do
26: dPairs;cNumh i  comp(pBP, blocks, order)
27: emit(dPairs)
28: pBP[2] dPairsj j / cNum

At first, PB calculates the number of records per partition
pSize by using a pessimistic sampling function in Line 2.
The algorithm also calculates the number of loadable blocks
per partition bPerP, the total number of blocks bNum, and
the total number of partitions pNum. In the Lines 6 to 8, PB
then defines the three main data structures: the order-array,
which stores the ordered list of record IDs, the blocks-array,
which holds the current partition of blocked records, and
the bPairs-list, which stores all recently evaluated block
pairs. Thereby, a block pair is represented as a triple of
blockNr1; blockNr2; duplicatesPerComparisonh i. We imple-
mented the bPairs-list as a priority queue, because the algo-
rithm frequently reads the top elements from this list. In the
following Line 10, the PB algorithm sorts the dataset using the
progressive MagpieSort algorithm. Afterwards, the Lines 11
to 14 load all blocks partition-wise from disk to execute the
comparisonswithin each block.

After the preprocessing, the PB algorithm starts progres-
sively extending the most promising block pairs (Lines 15
to 23). In each loop, PB first takes those block pairs bestBPs
from the bPairs-list that reported the highest duplicate den-
sity. Thereby, at most bPerP=4 block pairs can be taken,

Fig. 2. PB in a block comparison matrix.
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because the algorithm needs to load two blocks per bestBP
and each extension of a bestBP delivers two partition block
pairs pBPs in Line 20. However, if such an extension exceeds
the maximum block range R, the last bestBP is discarded.
Having successfully defined the most promising block pairs,
Line 21 loads the corresponding blocks from disk to compare
the pBPs in Line 22. The compare(blocks, pBPs, order)-
procedure is listed in Lines 24 to 28. For all partition block
pairs pBP, the procedure compares each record of the first
block to all records of the second block. The identified dupli-
cate pairs dPairs are then emitted in Line 27. Furthermore,
Line 28 assigns the duplicate pairs to the current pBP to later
rank the duplicate density of this block pair with the density
in other block pairs. Thereby, the amount of duplicates is
normalized by the number of comparisons, because the last
block is usually smaller than all other blocks. In Line 23, the
algorithm adds the previously compared pBPs to the bPairs-
list to use them in the next progressive iteration. If the PB
algorithm is not terminated prematurely, it automatically
finishes when the list of bPairs is empty, e.g., no new block
pairs within themaximum block rangeR can be found.

4.3 Blocking Techniques

Block size. A block pair consisting of two small blocks
defines only few comparisons. Using such small blocks,
the PB algorithm carefully selects the most promising
comparisons and avoids many less promising compari-
sons from a wider neighborhood. However, block pairs
based on small blocks cannot characterize the duplicate
density in their neighborhood well, because they repre-
sent a too small sample. A block pair consisting of large
blocks, in contrast, may define too many, less promising
comparisons, but produce better samples for the exten-
sion step. The block size parameter S, therefore, trades off
the execution of non-promising comparisons and the
extension quality. In preliminary experiments, we identi-
fied five records per block to be a generally good and not
sensitive value.

Maximum block range. The maximum block range parame-
ter R is superfluous when using early termination. For our
evaluation, however, we use this parameter to restrict the
PB algorithm to approximately the same comparisons exe-
cuted by the traditional sorted neighborhood method. We
cannot restrict PB to execute exactly the same comparisons,
because the selection of comparison candidates is more
fine-grained by using a window than by using blocks. Nev-
ertheless, the calculation of R as R ¼ bwindowSizeS c causes PB to
execute only minimally fewer comparisons.

Extension strategy. The extend(bestBP) function in Line 20
of Algorithm 2 returns some block pairs in the neighbor-
hood of the given bestBP. In our implementation, the func-
tion extends a block pair ði; jÞ to the block pairs ði þ 1; jÞ
and ði; j þ 1Þ as shown in Fig. 2. More eager extension strate-
gies that select more block pairs from the neighborhood
increase the progressiveness, if many large duplicate clus-
ters are expected. By using a block size S close to the aver-
age duplicate cluster size, more eager extension strategies
have, however, not shown a significant impact on PB’s per-
formance in our experiments. The benefit of detecting some
cluster duplicates earlier was usually as high as the draw-
back of executing fruitless comparisons.

MagpieSort. To estimate the records’ similarities, the PB
algorithm uses an order of records. As in the PSNM algo-
rithm, this order can be calculated using the progressive
MagpieSort algorithm. Since each iteration of this algorithm
delivers a perfectly sorted subset of records, the PB algo-
rithm can directly use this to execute the initial compari-
sons. In this way, the entire initialization loop listed in
Lines 11-14 can be integrated into the sorting step.

5 ATTRIBUTE CONCURRENCY

The best sorting or blocking key for a duplicate detection
algorithm is generally unknown or hard to find. Most
duplicate detection frameworks tackle this key selection
problem by applying the multi-pass execution method.
This method executes the duplicate detection algorithm
multiple times using different keys in each pass. How-
ever, the execution order among the different keys is arbi-
trary. Therefore, favoring good keys over poorer keys
already increases the progressiveness of the multi-pass
method. In this section, we present two multi-pass algo-
rithms that dynamically interleave the different passes
based on intermediate results to execute promising itera-
tions earlier. The first algorithm is the attribute concurrent
PSNM (AC-PSNM), which is the progressive implementa-
tion of the multi-pass method for the PSNM algorithm,
and the second algorithm is the attribute concurrent PB
(AC-PB), which is the corresponding implementation for
the PB algorithm.

5.1 Attribute Concurrent PSNM

The basic idea of AC-PSNM is to weight and re-weight
all given keys at runtime and to dynamically switch
between the keys based on intermediate results. Thereto,
the algorithm precalculates the sorting for each key attri-
bute. The precalculation also executes the first progres-
sive iteration for every key to count the number of
results. Afterwards, the algorithm ranks the different
keys by their result counts. The best key is then selected
to process its next iteration. The number of results of this
iteration can change the ranking of the current key so
that another key might be chosen to execute its next itera-
tion. In this way, the algorithm prefers the most promis-
ing key in each iteration.

Algorithm 3 depicts our implementation of AC-PSNM. It
takes the same five parameters as the basic PSNM algorithm
but a set of keys Ks instead of a single key.

First, AC-PSNM calculates the partition size pSize and the
overall number of partitions pNum. During execution, each
key is assigned an own state. To encode these states, the
algorithm defines three basic data structures in Lines 4 to 6:
an orders-array, which stores the different orders, a windows-
array, which stores the current window range for each
key, and a dCounts-array, which stores the keys’ current
duplicate counts. To initialize these data structures, Line 7
iterates all given keys. For each key, the algorithm uses
MagpieSort in Line 8 to create the corresponding order.
Simultaneously, it calculates and counts the duplicates of
the key’s first progressive iteration. In Line 9, AC-PSNM
then stores the number 2 as the recently used window range
for the current key.
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Algorithm 3. Attribute Concurrent PSNM

Require: dataset reference D, sorting keys Ks, window size
W, enlargement interval size I and record number N

1: procedure AC-PSNM(D, Ks,W, I, N)
2: pSize calcPartitionSize(D)
3: pNum N=ðpSize �W þ 1Þd e
4: array orders dimension Ksj j� N as Integer
5: array windows size Ksj j as Integer
6: array dCounts size Ksj j as Integer
7: for k 0 to Ksj j � 1 do
8: orders½k�; dCounts½k�h i  sortProgressive(D, I,

Ks½k�, pSize, pNum)
9: windows½k�  2
10: while 9 w 2 windows : w <W do
11: k findBestKey(dCounts, windows)
12: windows½k�  windows½k� þ 1
13: dPairs process(D, I, N, orders½k�,

windows½k�, pSize, pNum)
14: dCounts½k�  dPairsj j

After initialization, AC-PSNM enters the main loop in
Line 10. This loop continues until the maximum window
size W has been reached with all keys. In the loop’s body,
the algorithm first selects the key k that delivered the most
duplicates in the last iteration by consulting the dCounts-
array in Line 11. To execute the next progressive iteration
for k, the algorithm first increases the corresponding win-
dow range by one. Then, it calls the process(. . .) function
that runs the PSNM algorithm with only the specified rank-
distance. Afterwards, Line 14 updates the duplicate count
of the current key with the amount of newly found dupli-
cates. Due to the update, AC-PSNM might select another
best key in the next iteration. In this way, the algorithm
dynamically re-ranks the sorting keys.

Note that the process(. . .) function in Line 13 handles
record comparisons slightly different than MagpieSort in
Line 8. Since the initialization uses the keys in arbitrary
order, MagpieSort counts all duplicates that are found in the
first iterations to treat all keys equally. Afterwards, the pro-
cess(. . .) function reports only new duplicates that have not
been found before with a different key. This change in
behavior guarantees that the progressive main loop always
chooses the currently most promising key. Counting only
new duplicates also causes the algorithm to automatically
rank those keys last, whose orders are subsumed by other
keys’ orders. For instance, “postcode” might displace “city”
as a key in an address dataset, because it usually generates
a similar but more fine-grained order.

5.2 Attribute Concurrent PB

Instead of scheduling progressive iterations of different
keys, AC-PB directly schedules the bPair-comparisons of all
keys: AC-PB first calculates the initial block pairs and their
duplicate counts for all keys (see Fig. 2 in Section 4.1); then,
it takes all block pairs together and ranks them regardless of
the key, with which the individual blocks have initially
been created. This approach lets AC-PB rank the compari-
sons even more precisely than AC-PSNM.

Algorithm 4 shows the implementation of our AC-PB
algorithm. Basically, AC-PBworks like the already presented
PB algorithm with only a few changes: It takes the same five

input parameters as the PB algorithm, except that it now
takes a set of sorting keys Ks. Furthermore, AC-PSNM needs
to allocate an array of orders holding one order for each given
sorting key (Line 6). This key-separation is not needed for the
bPairs-list in Line 8, because AC-PB merges all block pairs
based on any order in this list. To match a block pair with its
corresponding order, AC-PB implements the block pairs as
quadruples containing their sorting key’s number in the
fourth field. Lines 9 to 11 initialize the three data structures
orders, blocks, and bPairs by iterating all sorting keys. Line 10
creates the initial block pairs and directly assigns the corre-
sponding key k to them. Afterwards, the AC-PSNM algo-
rithm uses MagpieSort to calculate the order for the current
key. As in the PB algorithm, the progressive sorting also eval-
uates the initial block pairs and stores the resulting duplicate
counts within them. Having finished the initialization, AC-
PSNM holds the orders of all sorting keys and one list con-
taining all block pairs. In Line 13, the algorithm then starts to
progressively process the block pairs by simply executing
the PB algorithm.

Algorithm 4. Attribute Concurrent PB

Require: dataset reference D, sorting keys Ks, maximum
block range R, block size S and record number N

1: procedure AC-PB(D, Ks, R, S, N)
2: pSize calcPartitionSize(D)
3: bPerP pSize=Sb c
4: bNum N=Sd e
5: pNum bNum=bPerPd e
6: array orders dimension Ksj j � N as Integer
7: array blocks size bPerP as Integer;Record½ �h i
8: list bPairs as Integer; Integer; Integer; Integerh i
9: for k 0 to Ksj j � 1 do
10: pairs 1; 1; ; kh i; . . . ; bNum; bNum; ; kh if g
11: orders½k�  sortProgressive(D, Ks½k�, S, bPerP,

pairs)
12: bPairs bPairs [ pairs
13: <<see Algorithm 2 Lines 15 to 23>>

The main loop interleaves the enlargements and compar-
isons of all block pairs by always choosing the most promis-
ing block pairs. In this way, the algorithm exploits the
different strengths and weaknesses of each key individu-
ally. For instance, one key might be good in grouping
records of duplicate cluster A and another key might group
records of cluster Bmore efficiently.

6 TRANSITIVE CLOSURE

Due to careful pair-selection and the use of similarity thresh-
olds, the result of a duplicate detection run is usually not
transitively closed: the record pairs ða; bÞ and ðb; cÞ might be
recognized as duplicates but ða; cÞ is (yet) missing in the
result. Traditional duplicate detection algorithms, therefore,
calculate the transitive closure of all results in the end [16].
As this calculation is blocking in nature, it hinders progres-
sivity. Therefore, we propose to calculate the transitive clo-
sure incrementally while the detection algorithm is running.

A suitable incremental transitive closure algorithm has
already been introduced by Wallace and Kollias [17]. The
proposed algorithm incrementally adds new duplicates,
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which are given as pairs of record identifiers, to an internal
data structure that serves to calculate transitive relations
from current results. The proposed data structure comprises
two sorted lists of duplicates—one sorted by first records
and one sorted by second records. If n is the number of
records in the result, the proposed data structure exhibits
an insert complexity of Oðnþ logðnÞÞ and a read complexity
of OðlogðnÞÞ. As these complexities would introduce a sig-
nificant performance drawback to our progressive work-
flow, we instead store the duplicates in an index structure:
We directly map each record identifier to a set of record
identifiers representing a duplicate cluster. To add a new
duplicate, we lookup the two contained records and point
them to the same cluster, in which we add both records.
Because of the map’s overhead, this data structure requires
approximately 75 percent more memory. However, inserts
and reads can be done in amortized constant time.

7 MEASURING PROGRESSIVENESS

In the previous sections, we presented the two progressive
pair-selection algorithms PSNM and PB, complemented
them with respective multi-pass methods, and finalized
their results by incrementally calculating the transitive clo-
sure. To measure their performance in the next section, we
now introduce our novel quality measure. As this measure
is sensitive to the system running the duplicate detection
process, we first discuss four exemplary system types and
then lead over to the definition.

7.1 Range of System Types

The following system types differ in their availability of
computational resources. Duplicate detection in these sys-
tems must, hence, serve individual requirements:

Fluctuating system. The load on many systems fluctuates.
As data cleansing consumes resources, a fluctuating system
has to perform data cleansing tasks at time intervals when
its load is low. As the duration of available resources is
unpredictable, progressive duplicate detection makes most
use of that time.

Pipeline system. Database and ETL systems use pipeline
strategies to process their input data. In these systems, data
is passed through multiple operators. Since a duplicate
detection component executes many complex record com-
parisons, it might lower the pipeline’s execution speed sig-
nificantly. Progressive duplicate detection algorithms tackle
this issue by maximizing the component’s output perfor-
mance especially in the starting phase.

Timeslot system. Sometimes, the operation mode of a sys-
tem is very strict or follows clear structures. In those sys-
tems, we observe well known, fixed sized timeslots of lower
and higher system load. A typical timeslot system is the
ERP-System of a non-globalized company. At night and on
weekends the systems load decreases for a predictable
period of time and resources become available for data
cleansing. In any of these timeslots, progressive algorithms
can maximize the output of duplicate detection processes.

Economic system. From the economic point of view, every
IT-System is a cost factor in a company, because the usage
of hardware resources must be paid and the system’s execu-
tion time might prevent other jobs from being done. The

quality of these systems is, hence, measured using a cost-
benefit calculation. Especially for traditional duplicate
detection processes, it is difficult to meet a budget limitation,
because their runtime is hard to predict. By delivering as
many duplicates as possible in a given amount of time, pro-
gressive processes optimize the cost-benefit ratio.

7.2 Quality Measure

We now define a novel metric to measure efficiency over time.
The efficiency of a duplicate detection algorithm is defined
by its cost-benefit ratio, where the costs correspond to the
algorithm’s runtime and the benefit to the number of found
duplicates. Hence, the measure focuses on recall and not on
precision. Precision is a property of the similarity function,
which we do not evaluate in this paper.

Definition 1 (Progressive Quality). Given the total number of
duplicates N in a dataset, a weighting function vðtÞ over time,
and the result function rðtÞ for the number of duplicates found
in the time interval ðt� 1; t�, then the progressive quality
QðT Þ of a duplicate detection algorithm for the measurement
time T is defined by the discrete sampling function:

QðT Þ ¼ 1

N
�
XT

t¼1
ðvðtÞ � rðtÞÞ: (1)

Functions vðtÞ and rðtÞ are formally defined later. All
results that an algorithm delivers later than T are ignored
for its evaluation. In particular, once the fastest (progressive
or non-progressive) algorithm terminates, further results of
any other algorithm are worthless. Hence, we define T as
follows:

Definition 2 (Measurement Time). Given n duplicate detec-
tion algorithms with individual overall runtimes Ti on the
same dataset and hardware, the measurement time T for the
progressive quality measure QðT Þ is defined as

T ¼ minfT1; T2; . . .Tng:

In Definition 1, N is used to normalize the quality values
so that QðT Þ 2 ½0; 1�. Furthermore, rðtÞ gives the number of
newly found duplicates in the time interval ðt� 1; t�. This
function is evaluated in discrete, equidistant intervals. Gen-
erally, we can choose any sampling rate for the measure-
ment intervals, but the higher the sampling rate is chosen,
the more precise the final quality value is. In Formula (1),
each duplicate measurement is also weighted by a system-
specific, time-dependent weighting function vðtÞ. One may
interpret vðtÞ as the probability that the algorithm is still
running at time t and that it has not been terminated before.
We define this function as follows:

Definition 3 (Weighting Function). Given a measurement time
T , the weighting function vðtÞ for a progressive quality measure
can be any function satisfying the following three conditions:

1) vðtÞ : ft j 0 < t � Tg�!fw j 0 � w � 1g
2) vðtÞ � vðtþ 1Þ
3) vð1Þ ¼ 1:

First, vðtÞ has to be defined for the entire measurement
time T to be used for the calculation of QðT Þ. Thereby, vðtÞ
weakens the result counts of rðtÞ by assigning weights
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between 0 and 1. This condition guarantees a final quality
�1. As vðtÞ is used to weight progressiveness, the second
condition states that the weighting function must monotoni-
cally decrease, ensuring that early results are never
weighted lower than later results. The last condition speci-
fies that the first weight must be 1 for any vðtÞ-function: an
ideal progressive algorithm, which immediately reports all
results right at the beginning, shall achieve a quality of 1,
regardless of the concrete weighting function.

The weighting function of choice depends on the given
use case. We propose four possible weighting functions for
previously introduced system types in Fig. 3.

The special economic weighting function vðtÞ ¼ max

ð1� ðt�1ÞT ; 0Þ makes QðT Þ equivalent to the area under the

curve of the result graph. Furthermore, the weighting func-

tion vðtÞ ¼ 1 leads to QðT Þ ¼ 1
N �

PT
t¼1 rðtÞ, which is the defi-

nition of recall. These two measures are often used to
evaluate the performance of an algorithm, but they are only
two possible instances of our more general measure and
have not been applied to evaluate progressiveness, yet.

8 EVALUATION

In the previous sections, we presented two progressive
duplicate detection algorithms namely PSNM and PB, and
their Attribute Concurrency techniques. In this section, we
first generally evaluate the performance of our approaches
and compare them to the traditional sorted neighborhood
method and the sorted list of record pairs presented in [1].
Then, we test our algorithms using a much larger dataset
and a concrete use case. The graphs used for performance
measurements plot the total number of reported duplicates
over time. Each duplicate is a positively matched record
pair. For better readability, we manually marked some data
points from the many hundred measured data points that
make up a graph.

8.1 Experimental Setup

To evaluate the performance of our algorithms, we chose
three real-world datasets with different characteristics (see
Table 1). Since only the CD-dataset comes with an own true
gold-standard, we computed duplicates in the DBLP- and
CSX-dataset by running an exhaustive duplicate detection
process using our fixed and reasonable (but for our evalua-
tion irrelevant) similarity measure.

The CD-dataset1 contains various records about music
and audio CDs. The DBLP-dataset2 is a bibliographic index

on computer science journals and proceedings. In contrast
to the other two datasets, DBLP includes many, large clus-
ters of similar article representations. The CSX-dataset3 con-
tains bibliographic data used by the CiteSeerX search
engine for scientific digital literature. CSX also stores the
full abstracts of all its publications in text-format. These
abstracts are the largest attributes in our experiments.

Our work focuses on increasing efficiency while keeping
the same effectiveness. Hence, we assume a given, correct
similarity measure; it is treated as an exchangeable black
box. For our experiments, however, we use the Damerau-
Levenshtein similarity [18]. This similaritymeasure achieved
an actual precision of 93 percent on the CD-dataset, for
whichwe have a true gold standard.

The first part of our evaluation is executed on a DELL
Optiplex 755 comprising an Intel Core 2 Duo E8400
3 GHz and 4 GB RAM. We use Ubuntu 12.04 32 bit as
operating system and Java 1.6 as runtime environment.
The evaluation of Section 8.6 uses a different machine,
explained there.

Memory limitation. We assume that many real-world
datasets are considerably larger than the amount of avail-
able main memory, e.g., in our use case described in
Section 8.6. Therefore, we limit the main memory of our
machine to 1 GB so that the DBLP- and CSX-dataset do not
fit into main memory entirely. 1 GB of memory corresponds
to about 100,000 records that can be loaded at once. The arti-
ficial limitation actually degrades the performance of
our algorithms more than the performance of the non-
progressive baseline, because progressive algorithms need
to access partitions several times. As our experiments show,
using more memory significantly increases the progressive-
ness of both PSNM and PB. Section 8.6 further shows that
all results on 1 GB main memory can be extrapolated to
larger datasets being processed using more main memory.

Quality measure. To evaluate the progressiveness of our
algorithms, we use the quality measure proposed in
Section 7.2. For the weighting function, we generally choose

vðtÞ ¼ maxð1� ðt�1ÞT ; 0Þ, i.e., the area under the curve of the

corresponding result graph. In this way, the calculated qual-
ity values are visually easy to understand.

Baseline approach. The baseline algorithm, which we use
in our tests, is the standard sorted neighborhood method.
This algorithm has been implemented similar to the PSNM
algorithm so that it may use load-compare parallelism as
well. In our experiments, we always execute SNM and
PSNM with the same parameters and optimizations to
compare them in a fair way.

Fig. 3. Weighting functions for our system types.

TABLE 1
Real-World Datasets and Their Characteristics

Name CD DBLP CSX

Records 9,763 1,268,017 1,385,532
Duplicates 277 67,586 195,042
Threshold 0.7 0.85 0.85
Best Key Track01 Title Title

1. www.hpi.de/naumann/projects/data-quality-and-cleansing/dude
2. www.informatik.uni-trier.de/ 	ley/db/ 3. csxstatic.ist.psu.edu/about/data
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8.2 Optimizations in PSNM

Before we compare our PSNM algorithm to the PB algo-
rithm and existing approaches, we separately evaluate
PSNM’s different progressive optimizations. We use a win-
dow size of 20 in all these experiments.

Window interval. The window interval parameter I is a
trade-off parameter: Small values close to 1 favor progres-
siveness at any price while large values close to the window
size optimize for a short overall runtime. In all our experi-
ments, I ¼ 1 performs best, achiebing, for instance, 67 per-
cent progressiveness on the DBLP-dataset. On the same
dataset, the performance reduces to 65 percent for I ¼ 2, to
62 percent for I ¼ 4 and to 48 percent for I ¼ 10. Hence, we
suggest to set I ¼ 1 if early termination can be used.

Partition caching. Although eventually PSNM executes
the same comparisons as the traditional SNM approach, the
algorithm takes longer to finish. The reason for this observa-
tion is the increased number of highly expensive load pro-
cesses. To reduce their complexity, PSNM implements
partition caching. We now evaluate the traditional SNM
algorithm, a PSNM algorithm without partition caching and
a PSNM algorithm with partition caching on the DBLP-
dataset. The results of this experiment are shown in Fig. 4 in
the left graph. The experiment shows that the benefit of par-
tition caching is significant: The runtime of PSNM decreases
by 42 percent minimizing the runtime difference between
PSNM and SNM to only 2 percent.

Look-ahead. To optimize the selection of comparison can-
didates, PSNM’s look-ahead strategy dynamically executes
comparisons around recently identified duplicates. In the
following experiment, we evaluate the gain of this optimiza-
tion. As in the previous experiment, we compare the look-
ahead optimized PSNM to the non-optimized PSNM on
the DBLP-dataset. As the results in the right graph of Fig. 4
show, the look-ahead strategy clearly improves the progres-
siveness of the PSNM algorithm: The measured quality
increases from 37 to 64 percent. This is a quality gain of
42 percent. On the CSX-dataset, however, the performance
increases by only 7 percent from 70 to 75 percent. The rea-
son is that the benefit of the look-ahead optimization greatly
depends on the number and the size of duplicate clusters
contained within a dataset. The CSX-dataset contains only
few large clusters of similar records and, therefore, exhibits
a very homogeneous distribution of duplicates, which is
why the look-ahead strategy achieves only a small gain in
progressiveness on that dataset.

Load-compare parallelism. By parallelizing the load phase
and the compare phase, the load time for partitions should
ideally no longer affect the performance. The following
experiments evaluate this assumption for our PSNM. Since

the load-compare parallelism also improves the traditional
SNM, the experiment runs SNM with and without paralleli-
zation as well. Fig. 5 illustrates the results of the experiment.

On the DBLP-dataset, load-compare parallelism per-
forms almost perfectly: the entire load-time is hidden by the
compare-time so that the optimized PSNM algorithm and
the optimized SNM algorithm finish nearly simultaneously.
This is due to the fact that the latency hiding effect reduced
the runtime of the PSNM algorithm by 43 percent but the
runtime of the SNM algorithm by only 5 percent. On the
larger CSX-dataset, however, the load-compare parallelism
strategy reduces the runtime of the SNM algorithm by
11 percent and the runtime of the PSNM algorithm by only
25 percent. This is a remarkable gain, but since the load
phases are much longer than the compare phases on this
dataset, the optimization cannot hide the full data access
latency: the CSX-dataset contains many enormously large
attribute values that increase the load time a lot.

Although the load-compare parallelism improves the
PSNM algorithm, all further experiments do not use this
optimization; the comparisons would become unfair using
parallelization for some algorithms and no parallelization
on some other algorithms, in particular those of [1].

8.3 Comparison to Related Work

In the following experiment, we evaluate our algorithms
PSNM and PB on all four datasets. We use the traditional,
non-progressive SNM algorithm as baseline to measure the
real benefit of PSNM and PB. Furthermore, the experiment
includes an implementation of the sorted list of record
pairs hint [1], which we consider to be the best progressive
duplicate detection algorithm in related work. For fairness,
SLORP also uses partition caching, because text-files had
not been considered as input format in that work. The
experiment uses a maximum window size of 20 for PSNM,
SNM, and SLORP. In accordance with Section 4.3, we set
both PB’s block size and PB’s block range to 5. So, the PB
algorithm executes 11 percent fewer comparisons on each
dataset than the three other approaches. The results of the
experiment are depicted in Fig. 6.

Low latency. On all datasets PSNM and PB start reporting
first results about 1-2 percent earlier than SNM and SLORP.
This advantage is a result of our progressiveMagpieSort. For
the non-progressive algorithms, we use an implementation
of the two-phase multiway merge sort (TPMMS), which is a
popular approach for external memory sorting. Although
TPMMS is highly efficient, Magpie-Sorting slighly outper-
forms this approach regarding progressiveness.

PSNM. In all three test runs, PSNM achieves the best per-
formance, approximately doubling the progressiveness of

Fig. 4. Effect of partition caching and look-ahead. Fig. 5. Evaluation of the Load-Compare Parallelism.

PAPENBROCK ET AL.: PROGRESSIVE DUPLICATE DETECTION 1325



the SNM baseline algorithm. PSNM also significantly out-
performs the SLORP algorithm. In our experiment, PSNM
exhibits a 6 (CSX) to 29 (DBLP) percent higher progressive-
ness than SLORP.

PB. The PB algorithm is the second best algorithm in this
experiment. As the progressiveness of this algorithm highly
benefits from more and larger duplicate clusters, it shows
its best performance on the DBLP-dataset. In general, PB
reports first duplicates in the starting phase clearly slower
than the PSNM, because running a window of size 1 is ini-
tially more efficient than running the first block compari-
sons. In the following phases, however, PB resolves
duplicate clusters extremely fast. Overall, PSNM is still
3 percent more progressive than PB on the DBLP-dataset.
Thereby, we need to consider that PB executes 11 percent
fewer comparisons than PSNM and, therefore, finds 4 per-
cent fewer duplicates. Hence, PB actually competes well
with PSNM on skewed datasets but loses on uniformly dis-
tributed duplicates in single-pass settings.

I/O-overhead. For a given dataset, the tasks of sorting, candi-
date generation, and record comparison all have the same
runtime in both progressive and non-progressive algorithms.
However, the progressive algorithms require more I/O oper-
ations if the data does not fit into main memory. This causes
their overall runtimes to increase, which then reduces their
progressivity. Fig. 6 shows these runtime differences espe-
cially for the large CSX-dataset. If the data fits intomainmem-
ory, e.g., for the CD-dataset, this effect cannot be observed.

Pairs quality. To show how precise comparison candi-
dates are chosen, we evaluated the pairs quality PQ [19] of
PSNM, PB, and SNM over time. The PQ of a duplicate
detection algorithm at time t is the number of identified
duplicates at t divided by the number of comparisons that
were executed to find these duplicates. So the perfect dupli-
cate detection algorithm comparing only those record pairs
that in fact are duplicates yields PQ ¼ 1. Fig. 7 depicts the
PQ-value curves for the CSX-dataset (left chart). As the
curves show, the two progressive approaches choose their
comparison candidates much more carefully: The PSNM
algorithm detects a new duplicate with every 12th and PB
with every 20th comparison in the first few minutes. The
baseline approach, in contrast, reports fewer than one dupli-
cate in 100 comparisons. In the end, all algorithms have exe-
cuted (almost) the same comparisons, so that their PQ
curves converge to the same value.

Precision and recall. The proposed progressive algorithms
enhance the efficiency and usability of duplicate detection
processes, but do not change their effectiveness. Of course,

the similarity function used to determine duplicates must
match the characteristics of the used sorting key(s). But both
similarity function and keys are irrelevant for the progres-
siveness of our algorithms. In other words: If the similarity
function is poor, we obtain the same poor results from pro-
gressive and non-progressive algorithms.

To illustrate this behavior, we evaluated the change in
precision and recall on the CD-dataset, which is the only
dataset for which a true gold-standard is given. As the right
chart in Fig. 7 shows, the recall curves correspond to the
previous duplicate curves. The precision curves, on the
other hand, give the following insights: First, the final preci-
sion of 93 percent is relatively high, which underlines the
suitability of the used similarity function. Second, both
SNM and PSNM have very similar values in precision,
which verifies the irrelevance of the similarity measure for
progressiveness. Third, the progressive algorithms find
fewer false positive matches in relation to true positive
matches in the beginning, as the precision graphs show.

8.4 Attribute Concurrency

Our Attribute Concurrency algorithms AC-PSNM and AC-
PB progressively execute the multi-pass method for the
PSNM algorithm and PB algorithm, respectively, favoring
good keys over poor keys by dynamically ranking different
passes using their intermediate results. In the following, we
compare AC-PSNM and AC-PB to the common multi-pass
execution model, which resolves the different keys sequen-
tially in random order. The experiment uses three different
keys, which are {Title}, {Authors}, and {Description}.
Since a common multi-pass algorithm can execute the dif-
ferent passes in any order, it might accidentally choose the
best or worst order of keys. Therefore, we run the tradi-
tional, sequential multi-pass algorithm with the optimal key
Sequence 1, two mediocre key Sequences 2 and 3 and the

Fig. 6. Performance comparison of the traditional SNM and the progressive PB, PSNM, and PB algorithms.

Fig. 7. Evaluation on pairs quality PQ (left) and precision and recall
(right).
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worst key Sequence 4. The corresponding graphs are
depicted in Fig. 8. The fifth graph in both charts shows
the AC-strategy for the respective algorithm.

First of all, both charts show that the AC-approaches
need about 10 percent more time to finish. This is because
the ranking of intermediate results and the scheduling of
different keys takes some additional time. Moreover, both
approaches need to store all orders simultaneously in main
memory, which decreases the size of their partitions.

We first evaluate the results for the AC-PSNM algorithm.
With a progressiveness of 79 percent, Sequence 1 is the best
approach. Our AC-PSNM algorithm, then, delivers the sec-
ond best result with 76 percent followed by all other results.
Thereby, the worst sequence achieves a progressive quality
of only 59 percent.

Due to the overhead of creating all orders and lots of ini-
tial block pairs, the PB approach loses much time early on.
But after 18 minutes runtime, the attribute concurrent PB
algorithm outperforms all other multi-pass approaches,
because it has finished the initial runs and can now simulta-
neously use the benefits of all orders. Therefore, its overall
progressiveness of 90 percent is almost as good as the
progressiveness of the best sequence, which is 91 percent.
The worst sequence of sorting keys, in contrast, achieves
only 62 percent progressive performance, which is about 1

3
less than the best two approaches.

In summary, both attribute concurrent approaches offer a
good progressive quality. Although they might not find the
most progressive multi-pass configurations, they always
produce reliable execution orders for the different passes.
We also see that PB outperforms PSNM in multi-pass set-
tings. Finally, it is worth noting that due to dynamically
generated execution orders only little expert knowledge is
needed in creating good sorting or blocking keys.

8.5 Incremental Transitive Closure

In this experiment, we evaluate the computational overhead
caused by the incremental calculation of the transitive clo-
sure. We take a result set of one million duplicates (a subset
of duplicates found in the use case of Section 8.6), submit it
to the transitive closure algorithm and measure the time
after each insert. Fig. 9 plots the resulting curve.

The left chart shows that the proposed sorted lists of
duplicates data structure does not scale well with the result
set’s size. However, the incremental transitive closure algo-
rithm by Wallace and Kollias [17] scales linearly with the
number of identified duplicates if we use an index structure
on the identified duplicates. The measurements further
show that the overhead of calculating the transitive closure
is negligible: Identifying one million duplicates took more

than 30 minutes, but calculating the transitive closure on
them takes only 1.4 seconds.

8.6 Examining a Concrete Use Case

Progressive duplicate detection is an efficient and conve-
nient solution for many data cleansing use cases. In cooper-
ation with plista (www.plista.com), a company offering
target-oriented online advertisement, we used our progres-
sive algorithms to detect persona in web server log data.
A persona is a user with a certain interest area. Hence, the
same user is and should be reflected by different persona, if
her interests differ. Compared to the number of entity
duplicates in traditional data cleansing tasks, we expect
many more persona duplicates in this dataset.

To arrange target-oriented advertisements, plista collects
anonymized web log data for visitors of their customer’s
web pages. The huge amount of constantly growing data
comprises information about user’s software, geographic
location, query terms, and categories, to mention only a few
attributes. We refer to this dataset as the plista dataset [20].
For the task of finding persona, we consider a subset of the
IMPRESSION-table comprising 100 million records and
63 attributes, which corresponds to 150 GB in total.

Although primarily used to create recommendations for
advertisement, plista also analyzes the dataset to identify
users. Currently, users are identified by their session ID—
not recognizing different users that, for instance, share the
same device or same users that maintain multiple sessions.
To identify users more accurately, domain experts at plista
defined a similarity measure for web log records that dedu-
plicates personas. The similarity measure compares 17 of
the 63 attributes by either edit-distance, numerical distance,
or exact matching and returns a final similarity as the
weighted sum of the individual similarities.

To run the persona detection, we use a Dell PowerEdge
R620 with two Intel Xeon E5-2650 2.00 GHz CPUs and
128 GB DDR3-1600 RAM. Note that although the server pro-
vides 16 cores, the current implementations of all algorithms
are single-threaded and, therefore, utilize only one core.
Hence, all algorithms can further be improved by paralleliza-
tion. The server’s main memory of 128 GB can hold 15 mil-
lion records of the given plista-dataset, which leads to seven
partitions overall. Due to the size of the dataset and the high
number of expected duplicates, we also increase the maxi-
mum window size to 50 for the SNM-approaches and the
block size to 6 andmaximumblock range to 8 for the PB algo-
rithm. The results of this experiment are shown in Fig. 10.

The traditional sorted neighborhood method takes almost
seven days to finish the persona detection. Not only must the
user wait this long for results, the algorithm also reserves sig-
nificant server resources during these days. In combination

Fig. 8. Attribute Concurrency on the DBLP-dataset.
Fig. 9. The incremental transitive closure overhead.
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with early termination, both progressive algorithms signifi-
cantly reduce this effort. Although the two algorithms require
more time to completely finish, they deliver almost same
results in a much shorter time: PSNM identifies 71 percent
and PB identifies 93 percent of all duplicates already in the
first two days. So if we accept a slightly less complete result,
we can run the deduplication in two instead of seven days.

With 56 percent, SNM exhibits an above average pro-
gressive performance. However, PSNM still outperforms
this quality with 73 percent and PB with even 88 percent.
These results are comparable to the results that we mea-
sured in Section 8.3 on smaller datasets using less mem-
ory. The reason for PB significantly outperforming PSNM
on the plista dataset is that the dataset contains many
duplicate clusters, which was foreseeable for the use case
at hand. We also show the quality for other weighting
functions vðtÞ with L ¼ 1 and t in days for this experi-
ment: As the first two rank the results similar, the last
function puts so much weight on the few very early
results that PSNM is ranked highest here. So PSNM might
be preferable in a pipeline-scenario.

In the analysis, we found out that the plista dataset
contains about 135 million duplicate pairs (wrt. the expert’s
similarity measure definition of a persona). After merging
all these duplicates, we ended up with 61.4 million distinct
personas in the 100 million web log records. Among those,
55 million were singletons, i.e., had no duplicate. So each
persona visited about 1.6 web-pages containing plista
advertisement on average. Furthermore, the average size of
a duplicate cluster (excluding the singletons) is 21, which
corresponds to seven records for the same persona. So most
personas visit only one web-page with plista advertisement
(the singletons), but if a persona visits more than one page,
then she visits seven pages on average. By further inspect-
ing the identified personas, however, data mining special-
ists might discover more insights.

In summary, executing a full, traditional duplicate detec-
tion run on plista’s massive amount of log data turned out
to be extremely time and resource consuming. Using pro-
gressive duplicate detection techniques, on the contrary,
renders this process feasible: As the result of the persona
detection must not necessarily be complete, the progressive
analysis can be stopped at any point in time and still maxi-
mizes the output.

9 CONCLUSION AND FUTURE WORK

This paper introduced the progressive sorted neighborhood
method and progressive blocking. Both algorithms increase the

efficiency of duplicate detection for situations with limited
execution time; they dynamically change the ranking of
comparison candidates based on intermediate results to
execute promising comparisons first and less promising
comparisons later. To determine the performance gain of
our algorithms, we proposed a novel quality measure for
progressiveness that integrates seamlessly with existing
measures. Using this measure, experiments showed that
our approaches outperform the traditional SNM by up to
100 percent and related work by up to 30 percent.

For the construction of a fully progressive duplicate
detection workflow, we proposed a progressive sorting
method, Magpie, a progressive multi-pass execution model,
Attribute Concurrency, and an incremental transitive closure
algorithm. The adaptations AC-PSNM and AC-PB use mul-
tiple sort keys concurrently to interleave their progressive
iterations. By analyzing intermediate results, both
approaches dynamically rank the different sort keys at run-
time, drastically easing the key selection problem.

In future work, we want to combine our progressive
approaches with scalable approaches for duplicate detec-
tion to deliver results even faster. In particular, Kolb et al.
introduced a two phase parallel SNM [21], which executes
a traditional SNM on balanced, overlapping partitions.
Here, we can instead use our PSNM to progressively find
duplicates in parallel.
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