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voltages at desired level. Note that when there is no voltage
sag, the TDVR does not inject any voltage. It is evident from
Fig. 7(c) that the load voltage waveforms are balanced and
undistorted. The THD of the load voltage is measured to be
1.92%.

The experimental performance of the constant switching
frequency based SMC system is also tested under the same
voltage sag condition presented in Fig. 7. The results are
depicted in Fig. 8. Clearly, the TDVR injects the required

Ve and Vi, obtained by the constant switching frequency based SMC under voltage sags. (&) Vg, , (b)

compensation voltages as shown in Fig. 8(b). As a
consequence of the injected compensation voltages, the load
voltages are almost not affected from the voltage sags and are
maintained to be sinusoidal, balanced and undistorted as can be
seen in Fig. 8(c). The THD of load voltage is measured to be
1.34%. Comparing the THDs of load voltages obtained by both
SMC methods under this voltage sag condition, the constant
switching frequency based SMC is seen to lead to smaller THD
than that of time-varying based SMC.

Fig. 9 shows the experimental waveforms of the switching

frequency for the switching devices (T, and T,) on phase A leg
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of VSI and compensation voltage (v,, , ) that correspond to the

voltage sag cases presented in Figs. 7 and 8. Fig. 9(a) shows
the experimental waveforms of time-varying switching
frequency together with the injected compensation voltage. It
can be clearly seen that the switching frequency during the
voltage injection period is time-varying. It is worth to note that,
in the experimental system, the switching frequency has been
observed at the output of a monostable that is triggered by the
gate signal of switching devices. Except the spikes occurring
due to the noise in the gate signal of switching devices, the
minimum and maximum switching frequencies were observed
as 10.5kHz and 14.5kHz, respectively. The minimum and
maximum switching frequencies computed from (38) are
10.22kHz and 12.74kHz, respectively. While computed and
measured minimum switching frequencies agree well, there is
a small discrepancy between computed and measured
maximum frequencies due to the assumptions made in
simplifying the theoretical derivation of the switching
frequency. On the other hand, the sinusoidal behavior of the
switching frequency at 100Hz (see (38)) is not clearly visible
in the experimental results due to the sampling time.

Fig. 9(b) shows the experimental waveforms of constant
switching frequency together with the injected compensation
voltage. It is clear that the switching frequency is always
constant at 12.5kHz before and during the voltage injection
period.
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C. Fault Ride-Through Capability

The amount of the voltage sags considered in Figs. 7 and 8
was approximately 30.43% of the grid voltage. In such a case,
a short circuit current flows into a fault in the grid. The
performance of the proposed SMC methods can also be
investigated under worst grid faults such as single-phase to
ground (asymmetrical) fault and three-phase to ground
(symmetrical) fault. Fault ride-through (FRT) of the TDVR is
the capability to restore and maintain the load voltage at
desired level in case of a fault occurs in the grid for a short
period of time. However, due to the limited space, the FRT
capability of the constant switching frequency based SMC
method is presented only. Fig. 10 shows the simulation results
of grid, injected and load voltages under a three-phase to
ground fault in the grid at t =0.04s. It can be seen from Fig.
10(a) that the fault lasts two cycles. The TDVR injects the
desired compensation voltages to clear the fault as shown in
Fig. 10(b). As a consequence of this voltage injection, the load
voltages are quickly restored after the fault (see Fig. 10(c)).
This indicates that the three-phase TDVR with the proposed
constant switching frequency based SMC method provides
sufficient FRT behavior for a symmetrical fault existing in the
grid.

Fig. 11 shows the simulation results of grid, injected and
load voltages under a single-phase to ground fault in the grid. It
is evident that the TDVR compensates the faulted phase
voltage quickly and restores the load voltage after the fault.
These results clearly show that the TDVR operates efficiently
to protect the loads under the asymmetrical and symmetrical
faults existing in the grid.

D. Comparison with Existing Control Methods

The proposed SMC methods have considerably simpler
structure compared with most of the existing control
approaches. The TDVR with the proposed SMC methods and
the DVR with the optimized SMC method proposed in [15] are
modelled in Simulink using the same parameters given in [26].
These parameters are V,, =600V, L; =10mH, C, =20.F,

V, =230y2V, f=50Hz, f,, =4.2kHz, 1=2236, and

three-phase linear RL load (60Q2+199.9mH, 40Q2+249.9mH,
5002 +159.9mH ). The hysteresis band was set to h=75000 in
order to have an average switching frequency of 4.2kHz.
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Fig. 10. Simulated responses of vy , Vg ¢ and V| obtained by the constant switching frequency based SMC under three-phase-to-ground fault.
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Fig. 11. Simulated responses of vy , Vg ¢ and V|, obtained by the constant switching frequency based SMC under single-phase-to-ground fault.
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Fig. 12. Simulated responses of Vg , Vg and Vi, obtained by the SMC method presented in [15]. (&) Vg , (b) Vg ¢ and (c) v,, -
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Fig. 13. Simulated responses of vy , Vg and V|, obtained by the time-varying switching frequency based SMC. (a) v, , (b) Vg and (c) v,
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Fig. 14. Simulated responses of vy , Ve and V|, obtained by the constant switching frequency based SMC. (a) Vg , (b) Vg and (C) v, -

The simulation studies were carried out under linear RL load voltages are computed as 0.91% and 0.8%, respectively.
load when 30% voltage sag exists in the grid. Fig. 12 shows the ~ Comparing the results presented in Figs. 12, 13 and 14 with the
simulation results of vy, Vg, and v, obtained by the SMC results presented in [26], one can see that the load voltages for

. ' . the constant switching frequency based SMC are less distorted
method presented in [15]. The THD of load voltage is .
computed to be 1.21%. than the others. These THD results together with the THD

. . . result in [26] are presented in Table I. Furthermore, the
Fig. 13 and 14 show the simulation results of Vg , Vg and 5550664 SMC methods not only offers a significant advantage
Vv, obtained by the time-varying and constant switching from the robustness point of view, but also leads to a relatively
frequency based SMC methods, respectively. The THDs of ~Simpler implementation compared with the predictive voltage

based control method presented in [26].
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operation at all times. The feasibility of both SMC methods has
been validated by experimental results obtained from the

TABLE I TDVR operating under highly distorted grid voltages and
COMPARISONS OF TWO CONTRaLEmZT;sDSW'TH THE PROPOSED SMC y/gltage sags. The results obtained from both methods show
excellent performance. However, the constant switching
Comparison [15] [26] Proposed SMC Methods frequency based SMC method not only offers a constant
Category Time-Var. | Constant switching frequency at all times and preserves the inherent
fo fsu advantages of the SMC, but also leads to smaller THD in the
THD. (%) 1.21 1.20 091 0.80 load voltage than that of time-varying switching frequency
Sensitivity to Insensitive | Sensitive | Insensitive | Insensitive based SMC method.
syst. param.
Size Bulky with | Smaller Smaller Smaller REFERENCES
transformer . .
Implementation | Simple Complex | Simple Simple (1] l\L/JISABOIIIIEeIrE]E gpe(izrsztgggmg Power Quality Problems. New York, NY;
gon_lp:]e_xny Varaol Fixed Varabl Fixed [2] B. Singh, A. Chandra, and K. Al-Haddad, Power Quality: Problems and
fW' ching ariaple Ixe ariaple IX€ Mitigation Techniques. West Sussex, United Kingdom: John Wiley &
requency _ Sons Inc., 2015.
FRT capability | Not Not Reasonably | Reasonably [3] Y. W. Li, F. Blaabjerg, D. M. Vilathgamuwa, and P. C. Loh, ”Design
reported reported | fast fast and comparison of high performance stationary-frame controllers for
DVR implementation,” IEEE Trans. Power Electron., vol. 22, no. 2, pp.
Fig. 15 shows the load voltage spectrums obtained by time- il 632-?(1_2, Maf& 2;30;- Sl “C _ " ol in dvnami
: i . Kim, and S. K. Sul, Compensation voltage control in dynamic
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switching frequ_ency based SMC contains onl)_/ thg fundamental 6] y. W. Li, F. Blaabjerg, D. M. Vilathgamuwa, and P. C. Loh, *Design
component. This means that the constant switching frequency and comparison of high performance stationary-frame controllers for
based SMC offers better quality load voltage. The main reason ?()‘;igpll\imegtggym” LEEE Trans. Power Electron., vol. 22, no. 2, pp.
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