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Abstract—This manuscript proposes non-binary orthogonal Latin square (OLS)

codes that are amenable to a multilevel phase change memory (PCM). This is

based on the property that the proposed (n symbols, k symbols) t-symbol error

correcting code uses the same H matrix as an (n bits, k bits) binary t-bit error

correcting OLS code. The new codes are shown to have a shorter check bit length

and better probability in encoding/decoding than conventional binary OLS codes.

Extensive results are provided for assessment and comparison. The proposed

codes are also shown to be always better than the matrix codes, i.e. independently

of the metric and the parameters employed in the comparison.
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1 INTRODUCTION

THE phase change memory (PCM) has emerged in recent years as
one of the most promising technologies for future non-volatile
solid-state memories with significant implications on the entire
storage hierarchy [1]. PCM has attracted considerable attention
due to its low latency, good endurance, long retention and high
scalability compared to other non-volatile memories. PCM relies
on the reversible thermally-assisted phase transformation of the
chalcogenide alloy Ge2Sb2Te5, (GST), as occurring between two
structurally different phases of electrical properties: the amor-
phous phase with a high resistivity and the poly-crystalline phase
with a low resistivity [1]. These two phases are usually referred to
as the RESET and SET states, respectively [1], [2], [3]. There is a
large resistance margin between the amorphous and the crystalline
phases, so a PCM can store multiple bits of information in a single
cell; this is accomplished through a multilevel storage implementa-
tion based upon incomplete phase transitions [1]. Advantages such
as increased storage density and hence lower cost are of primary
importance for the successful development of multilevel memory
systems using PCM [4]. However, the resistance of a phase change
material such as GTS tends to drift over time [4], [5]. The change in
resistance severely degrades the margin between adjacent levels,
leading to a serious data integrity challenge [6].

For PCM, the occurrence of the drift requires both compensa-
tion techniques in the management of the resistance range of the
cells and efficient error correcting codes (ECC) [7], [8]. [8] has pro-
posed error correction using orthogonal Latin square (OLS) codes;
the OLS code provides both multiple-bit error correction and high-
speed decoding [9]. However, the OLS code is a binary code and
thus, it targets only bit-errors. Advances in PCM technology have
already made possible the design and commercialization of quater-
nary cells [1], [10]; it is envisioned that in the next few years, an
octal cell could be ready available as multilevel PCM. It is well
known that to control non-binary data with binary codes is not

very efficient. Hence, the following three features are highly desir-
able for PCM storage: 1) non-binary, 2) multiple-error correction
and 3) parallel decoding.

The objective of this manuscript is to propose non-binary OLS
codes that are amenable to a multilevel PCM addressing the above
three features. The new codes are shown to have a shorter check
bit length and better probability in encoding/decoding than the
conventional binary OLS codes of [8]. In addition, the proposed
non-binary OLS codes provide better parallel implementations for
the encoder and decoder circuits in terms of area, power consump-
tion and delay. Extensive results are provided for assessment and
comparison. The proposed codes are also shown to be always bet-
ter than the matrix codes of [11], [12], i.e. independently of the met-
ric and the parameters employed in the comparison.

2 REVIEW

This section provides a brief review of the basic operational fea-
tures of a PCM and issues related to resistance drift and multilevel
storage as affecting its data integrity. Also a brief review of existing
codes as related to the proposed scheme is presented.

2.1 Phase Change Memory

This section reviews different aspects as related to PCM, resistance
drift behavior and multilevel storage. As described previously,
PCM is regarded as one of the most viable candidate for the next
generation of non-volatile memories [1]. A PCM relies on the revers-
ible phase transformation of the chalcogenide alloy (e.g. Ge2Sb2Te5,
GST) between the amorphous and the crystalline states. The amor-
phous state has a high resistance and is commonly referred to as the
reset state; the crystalline phase has a low resistance and is referred
as the set state. If the PCM is in the Reset state (amorphous) and the
voltage across the PCM cell is higher than the threshold value, then
a snapback behavior occurs and the resistance of the PCM is
switched to the ON state value. If the PCM is in the ON state, it will
switch back to the OFF state if and only if the voltage across the
PCM is less than the so-called ON/OFF Intersection Point. A PCM
cell can be used as a multilevel memory to increase capacity; this is
made possible by its high resistance range, i.e. the difference
between the resistances of the SET and RESET states.

However, after a PCM cell is programmed, its resistance
increases with time; this phenomenon is generally known to as the
resistance drift. The resistance drift is believed to be the result of
structural relaxation (SR) phenomena that are thermally activated
as an atomic rearrangement of the amorphous structure [10], [13].
A multilevel PCM experiences a difference in resistance drift over
time, leading to a significant degradation in data integrity [13].
Fig. 1 shows the basic principles of resistance drift in a multilevel
PCM cell. The resistance at each level varies according to a Gauss-
ian distribution and accounts for less (more) drift when the PCM is
in the (amorphous) crystalline phase. The resistance of each level
changes during T (Fig. 1) and it could pass the threshold value (as
separating two adjacent levels). This results in an erroneous output
following a read. The erroneous effects of the resistance drift in a
PCM cell can be alleviated if the threshold resistances could also
vary with time. In [14], a time-aware fault-tolerant scheme is used
for correcting the resistance drift of a PCM. The drift behavior of
the threshold resistance is taken into account by keeping the so-
called lifetime of the PCM in the form of time tag bits and using
them to find the threshold resistances.

Multilevel storage is achieved through an accurate programming
of the PCM cell into intermediate resistance values, i.e. the values
between the SET and RESET states [1]. This scheme however, is
susceptible to process and material variability; for example, the
temperature that is generated in the PCM by using the same pro-
gramming pulse, varies from cell to cell. Therefore, a single pulse
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programming arrangement is not a viable option for multilevel
PCM storage, because the resulting resistance level distributions
are rather broad and difficult to predict [15]. A possible solution is
to employ an iterative programming strategy that starts by reading
the most recent resistance value of a PCM and comparing with a
reference value; then, a programming current is utilized to bias
and adjust the resistance of the PCM cell to the desired value.
However, mitigation schemes such as the ones proposed in [14] are
not sufficient to deal with the issue of drift once a multilevel PCM
is considered. This is mostly caused by the reduced resistance val-
ues between two adjacent levels and the characteristic that the drift
is more pronounced at higher values of resistance in the PCM
range. Moreover, the additional number of operations to be per-
formed may further degrade the endurance of a non-volatile mem-
ory cell, such as a PCM [13].

2.2 Coding Techniques

The Hamming code is one of the most frequently ECCs used in a
memory system [7]; it covers both binary and non-binary data, but
it only corrects single errors. To control multiple errors, BCH codes
and Reed-Solomon codes have been widely adopted [7]. A univer-
sal parallel decoding method has been proposed in [16]; any multi-
ple-symbol error correcting codes, including RS codes, can be
decoded in parallel using this method. However, this method
incurs in a large hardware overhead when utilized for multiple-
symbol error correction. Better codes can be obtained by arranging
the data in the memory array and using codes with a weak capabil-
ity for each row and column; these are generally known as matrix
codes (also referred as product codes) [7]. Decoding of matrix
codes is generally difficult; recently, a decoding algorithm for a
double-error correcting matrix code has been proposed in [11], [12]
that partially alleviates this negative feature.

The low- density parity check (LDPC) code is another well-
known class of codes capable of correcting multiple errors. LDPC
codes are usually decoded by iterative decoding schemes, such as
the one used for PCM in [14]. However, this scheme requires a
long time for decoding. Chen et al. have proposed a high-speed
decoding scheme for LDPC codes by satisfying the so-called row-
column (RC) constraint [17]. It has been proved [17] that if and
only if a code satisfies the RC constraint in the parity check H
matrix, no two rows or two columns have more than one place
where they both have nonzero elements. This scheme is based on
one-step majority-logic decoding (OSMLGD) [7]. Hsiao et al. [9]
has proposed an OLS code capable of correcting multi-bit errors.
As it satisfies the RC constraint, this code can be decoded at high-
speed using OSMLGD [18], thus confirming the excellent suitabil-
ity of the OLS code for a memory system [18]. Datta and Touba [8]
has shown that the OLS code can be used in a PCM; it should be
noted that the OLS code is a binary code targeting only bit-errors.

Next, the binary OLS code [9] is reviewed. The OLS code uses
orthogonal Latin squares, which are m�m square arrays of digits
0; 1; . . . ;m� 1. Each digit occurs exactly once in each row and
exactly once in each column. Two Latin squares L ¼ ½lx;y� and

L’ ¼ ½l’x;y� are said to be orthogonal if every pair of elements

(lx;y; l’x;y) appears exactly once. For example the following two

squares L and L’ are orthogonal Latin squares:

L ¼
0 1 2
2 0 1
1 2 0

2
4

3
5; L0 ¼

0 1 2
1 2 0
2 0 1

2
4

3
5: (1)

The following matrix H is an H matrix (i.e. a parity check
matrix) of a binary t-bit error correcting OLS code:

H ¼

M1

M2

M3 I2tm
..
.

M2t

2
666664

3
777775
;

whereMið1 � i � 2tÞ is anm�m2 matrix defined below:

M1 ¼

11 � � � 1 O

11 � � � 1
. .
.

O 11 � � � 1

2
66664

3
77775
m�m2

M2 ¼ ½ Im Im � � � Im �m�m2 :

The matrices Mið3 � i � 2tÞ are generated from the Latin
squares Li such that any two Latin squares are orthogonal. More-
over, the check bit length of the OLS code (denoted by r) is equal to

2tm; m2 must be equal to or larger than the information bit length

k. In such cases it is not always true that r ¼ 2t
ffiffiffi
k

p
because 2t� 2

orthogonal Latin squares of size m�m not always exist. Colbourn
and Dinitz [19] has discussed the maximum number of orthogonal

Latin squares. The condition that r � 2t
ffiffiffi
k

p
is still applicable. The

OLS code is capable of correcting t-bit errors, because it satisfies
the RC constraint and the minimum column weight of its H matrix
is 2t [7]. The minimum distance of a code satisfying the RC con-
straint is equal to g þ 1, where g is the minimum column weight of
its H matrix. Thus, the minimum distance of the OLS code is 2tþ 1,
i.e. the code is capable of correcting t-bit errors.

OLS codes can be decoded using OSMLGD [7]. There are two
types of OSMLGD, namely type-I and II. In type-I, the syndrome is
generated and then the error pattern is calculated from the syn-
drome. In type-II, the error pattern is directly calculated from a
received word. It is well known that type-II accomplishes better
serial decoding than type-I. However, type-I is better suited for par-
allel decoding than type-II (as discussed next). Decoding for PCM
requires a high-speed parallel scheme; so this paper deals with
only type-I. A type-I based decoder requires two steps namely syn-
drome generation and error pattern calculation; the decoder must
control these steps. A type-II based serial decoder is simpler than a
type-I. A type-II based parallel decoder incurs in a larger overhead
than a type-I based parallel decoder, because these two steps
in type-I are accomplished by serially connecting a syndrome gen-
erator and an error pattern calculator without complex control. In
addition, the direct calculation in a type-II incurs in a larger over-
head than the combination of syndrome generation and error pat-
tern calculation; this overhead is rather large for the entire decoder.

OLS codes can be decoded as follows. Let Sj be a vector that con-
tains all i-th elements si in a syndrome (s0; s1; . . . ; sðr�1Þ) such that hi;j

in the H matrix is 1. Suppose that a t-bit error occurs on a received

Fig. 1. PCM resistance distribution over time.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 7, JULY 2015 2093



word v. If the i-th bit in v is erroneous, then the values of at least
ðtþ 1Þ bits in Sj are 1’s. If not, the values of at least t bits are 0’s.

Based on these conditions, errors can be corrected by flipping all
received bits, such that at least ðtþ 1Þ bits in Sj are 1’s, i.e. by adding

themajority of all values in Sj and a value 0 to all received bits.

3 PROPOSED APPROACH

This section presents the proposed non-binary multi-symbol
error correcting OLS codes to accomplish the following features
as highly desirable for PCM storage: 1) non-binary, 2) multiple-
error correction and 3) parallel decoding. They are reflected in
the H matrix and the encoder/decoder designs as treated next.
The proposed non-binary OLS code can be constructed over
finite rings. However, PCM requires codes over only GF ð2bÞ;
so, the hardware amount of decoder can be reduced for codes

over GF ð2bÞ.
Consider first the H matrix. The proposed code is over a finite

ring. The proposed (n symbols, k symbols) t-symbol error correcting
code uses the same H matrix as an (n bits, k bits) binary t-bit error
correcting OLS code (the H matrix consists of only additive and
multiplicative identities, 0 and 1). This condition is valid because
the Hmatrix of the non-binary OLS code satisfies the RC constraint.
In addition, the minimum column weight of the H matrix is the
same, i.e. 2t. Therefore the minimum distance of the proposed non-
binary OLS code is 2tþ 1, and the proposed code is capable of cor-
recting t-symbol errors. The relation between the information sym-
bol length k, the check symbol length r and the number of
correctable error symbols t is the same as that for the binary OLS

code, i.e. r � 2td ffiffiffi
k

p e. Figs. 2 and 3 illustrate the block diagrams of
the encoder and decoder for the proposed code. These circuits have
a traditional structure, so the check symbol generator in the
encoder, and the syndrome generator and the adder in the decoder
can also be implemented in a traditional scheme using additional
circuitry for the ring (i.e. the XOR gates for codes over GF(2b)).

Next, the construction of the error pattern calculator in the
decoder is described. This uses OSMLGD [7]. Let Sj be a vector that
contains all ith elements si in a syndrome (s0; s1; . . . ; sðr�1Þ), such
that hi,j in the H matrix is 1. The error magnitude ej in the jth sym-
bol of the received word is found by calculating the majority in Sj
and a value 0 when a t-symbol error occurs. This is valid because if
the value of the jth symbol changes from vj to vj þ ej, at least tþ 1

symbols in Sj are equal to ej. Moreover, if the value of the jth sym-
bol does not change, at least t symbols are 0. Next consider GF(2b).
A circuit of reduced complexity can be used as majority circuit in a
decoder for a non-binary OLS codes over GF(2b). The circuit does
not use b-to-2b decoders and 2b-to-b encoders. Instead, it counts the
number of 1’s in the binary-coded digits. It does not always work
as a majority circuit; however, it has sufficient functionality for use
in the decoder. For example, if Sj ¼ ð3; 3; 4; 5Þ ¼ ð011; 011; 100; 101Þ
over GF(23), then it outputs 1 ¼ (001) although the majority is 3.

However, such Sj does not appear when a t-symbol error occurs
(as previously discussed). At least tþ 1 symbols in Sj are equal to
the error magnitude ej, and thus, every bit in the binary-coded ej is
selected as the majority for each digit.

4 EVALUATION

This section evaluates the proposed 2b-ary t-symbol error cor-
recting OLS codes and compares them to the binary tb-bit error
correcting OLS codes [9], capable of correcting t-symbol errors,
for b ¼ 2, 3, 4 and 5. These values for b reflect current and
expected multilevel PCM capabilities as utilized for communica-
tion systems (at b ¼ 3 for ternary content addressable memory
operation) [10] and large storage systems (at higher values of b
for increased density) [5]. This section uses the lower bound of
the maximum number of orthogonal Latin squares presented in
[19] as the maximum value. The obtained evaluation results are
given as follows (note that RS codes and matrix codes are dis-
cussed and evaluated later.)

Table 1 shows the relation between the length of the informa-
tion and the check symbols for 2b-ary double symbol error correct-
ing OLS codes; the proposed codes are better than the conventional
binary codes for any parameters. Fig. 4 shows the relation between
the number of correctable symbol errors and the check symbol
length; Fig. 5 shows the legend of the figure. The curves of the pro-
posed code for b ¼ 2 and four completely overlap, because the
check symbol length of the proposed code is independent of b. The
proposed code is much better than a conventional scheme for
larger number of correctable symbol errors.

Fig. 6 shows the plot of the symbol error rate before decoding
and the probability that the information data (of 256 symbols) is
erroneous even after decoding. The curves of the binary and non-
binary OLS codes nearly overlap for every b.

The binary OLS codes are capable of correcting not only any
double symbol errors, but also any random 2b-bit errors unlike the
proposed non-binary OLS codes. Therefore, the binary codes have

Fig. 2. Proposed encoder design.

Fig. 3. Proposed decoder design.
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a higher error correction function. However, the probability is
worse than for the non-binary codes because of their long check
symbol length; so it is more likely that errors occur in check sym-
bols leading to miscorrection on information symbols when using
binary OLS codes. Table 2 shows the relation between error proba-
bility and information data length k. While the proposed non-
binary OLS code is better for short information data, this is worse
for long information data. This occurs because the probability of
miscorrection is low (instead of the long check symbol length in
binary OLS codes).

Next the evaluation of parallel encoders and parallel decoders is
pursued with respect to area, power consumption and gate depth.
Circuits are obtained by using Verilog-HDL (RTL-level) and
synthesized by using the Synopsys Design Compiler under an
industrial 180 nm CMOS technology. All designed circuits are com-
binational and the presented evaluation reports area, power

consumption and delay time normalized by those of an inverter
(thus making it feature size independent). They are denoted by the
ratios of AC=AI; PC=PI and DC=DI where AC and AI are the areas
of the evaluated circuit and an inverter, PC and PI are the power
consumptions of the evaluated circuit and an inverter, DC and DI

are the delay time of the evaluated circuit and an inverter. Fig. 7
and Tables 3 and 4 show the area, power consumption and delay
time of the parallel encoders for 2b-ary double symbol error correct-
ing code (Fig. 5 shows the legend for Fig. 7). The values for the pro-
posed non-binary OLS codes are better than for the binary OLS
codes due to the shorter check symbols. Fig. 8 and Tables 5 and 6
show the area, power consumption and delay time of the parallel
decoders for 2b-ary double symbol error correcting codes (Fig. 5
shows the legend for Fig. 8). The decoders for binary OLS codes
presented in [18] do not use syndrome generators. However, this
circuit requires a larger number of XOR gates (as for Fig. 1 in [8]),
thus incurring in a significant increase in area as well as causing an
increase in power consumption.

Table 7 gives the number of transistors required for a PCM
memory (at expected sizes) as well as the total number of

TABLE 1
Check Symbol Length r of ðkþ r; kÞ2b-ary Double Symbol Error

Correcting Codes

b code kk ¼ 256256 1,024 4,096 16,384

2 non-binary OLS 64 128 256 512
binary OLS 92 187 364 728
RS code 15 18 21 24
matrix code 170 364 770 1,620

3 non-binary OLS 64 128 256 512
binary OLS 116 234 448
RS code 10 12 14 16
matrix code 216 441 975 2,034

4 non-binary OLS 64 128 256 512
binary OLS 128 256 512
RS code 8 10 11 13
matrix code 256 516 1,148 2,316

5 non-binary OLS 64 128 256 512
binary OLS 148 292 594
RS code 7 8 9 10
matrix code 280 640 1,285 2,865

Fig. 4. Number of correctable symbol errors versus check symbol length for infor-
mation data with length of 256 symbols.

Fig. 5. Legend for Figs. 4, 7, and 8.

Fig. 6. Symbol error rate before decoding versus error probability in decoded
information data for 2b-ary double symbol error correction (information data of
256 symbols).

TABLE 2
Error Probability in Decoded Information Data for 2b-ary Double
Symbol Error Correction for Symbol Error Rates of 1 � 10�4

b code kk ¼ 256256 1,024 4,096 16,384

2 non-binary OLS 2.89 � 10�6 1.26 � 10�4 4.94 � 10�3 8.24 � 10�2

binary OLS 6.61 � 10�6 2.59 � 10�4 7.80 � 10�3 5.78 � 10�2

RS code 3.22 � 10�6 1.74 � 10�4 8.56 � 10�3 2.20 � 10�1

matrix code 2.23 � 10�6 6.09 � 10�5 1.57 � 10�3 2.74 � 10�2

3 non-binary OLS 2.56 � 10�6 1.11 � 10�4 4.38 � 10�3 7.31 � 10�2

binary OLS 7.96 � 10�6 2.25 � 10�4 1.62 � 10�3

RS code 3.04 � 10�6 1.71 � 10�4 8.52 � 10�3 2.20 � 10�1

matrix code 1.79 � 10�6 3.62 � 10�5 9.49 � 10�4 2.32 � 10�2

4 non-binary OLS 2.60 � 10�6 1.11 � 10�4 4.45 � 10�3 7.43 � 10�2

binary OLS 8.68 � 10�6 1.73 � 10�4 2.56 � 10�4

RS code 2.97 � 10�6 1.70 � 10�4 8.50 � 10�3 2.20 � 10�1

matrix code 1.46 � 10�6 3.73 � 10�5 1.14 � 10�3 1.68 � 10�2

5 non-binary OLS 4.19 � 10�6 1.82 � 10�4 7.17 � 10�3 1.20 � 10�1

binary OLS 9.97 � 10�6 9.59 � 10�5 3.19 � 10�5

RS code 2.94 � 10�6 1.69 � 10�4 8.49 � 10�3 2.20 � 10�1

matrix code 1.29 � 10�6 3.79 � 10�5 9.40 � 10�4 1.98 � 10�2
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transistors for the encoder and the decoder. Double symbol error
correcting codes over GF(22) and GF(23) are used assuming four-
and eight-level memory cells. So, a row includes 32 words; a
word includes 16 bits (eight cells). Coding is independent of

memory size; it depends on the number of bits in a row. The
number of transistors required for the encoders and decoders
are significantly smaller than for the memory (except in the case
of the RS code).

Fig. 7. Area of encoder for 2b-ary double symbol error correcting codes.

TABLE 3
Power Consumption of Encoder for 2b-ary Double Symbol

Error Correcting Codes

b code kk ¼ 256256 1,024 4,096 16,384

2 non-binary OLS 1.64 � 104 5.35 � 104 1.86 � 105 6.80 � 105

binary OLS 2.87 � 104 9.69 � 104 3.35 � 105 1.26 � 106

RS code 3.88 � 104 1.69 � 105 7.58 � 105

matrix code 3.22 � 104 1.27 � 105 4.44 � 105 1.77 � 106

3 non-binary OLS 2.46 � 104 8.02 � 104 2.79 � 105 1.02 � 106

binary OLS 6.10 � 104 2.33 � 105 7.44 � 105

RS code 5.27 � 104 2.37 � 105 1.08 � 106

matrix code 4.74 � 104 1.50 � 105 5.93 � 105 2.72 � 106

4 non-binary OLS 3.28 � 104 1.07 � 105 3.72 � 105 1.36 � 106

binary OLS 1.07 � 105 3.72 � 105 1.36 � 106

RS code 7.33 � 104 3.29 � 105 1.51 � 106

matrix code 6.12 � 104 2.03 � 105 8.76 � 105 3.30 � 106

5 non-binary OLS 4.10 � 104 1.34 � 105 4.65 � 105 1.70 � 106

binary OLS 1.65 � 105 5.69 � 105 2.11 � 106

RS code 8.77 � 104 4.02 � 105

matrix code 6.59 � 104 2.71 � 105 9.78 � 105 4.25 � 106

TABLE 4
Delay Time of Encoder for 2b-ary Double Symbol Error Correcting Codes

b code kk ¼ 256256 1,024 4,096 16,384

2 non-binary OLS 15.8 19.6 21.8 24.7
binary OLS 17.6 20.5 22.5 25.6
RS code 28.5 34.9 40.9
matrix code 21.1 24.0 27.1 30.2

3 non-binary OLS 15.8 19.6 21.8 24.7
binary OLS 19.6 21.8 24.0
RS code 30.0 36.0 41.6
matrix code 21.8 22.5 26.5 31.8

4 non-binary OLS 15.8 19.6 21.8 24.7
binary OLS 19.6 21.8 24.7
RS code 31.8 38.0 44.0
matrix code 22.5 25.6 28.9 30.9

5 non-binary OLS 15.8 19.6 21.8 24.7
binary OLS 19.6 22.5 25.6
RS code 31.8 38.0
matrix code 22.5 25.8 28.9 32.5

Fig. 8. Area of decoder for 2b-ary double symbol error correcting codes.

TABLE 5
Power Consumption in Decoder for 2b-ary Double Symbol

Error Correcting Codes

b code kk ¼ 256256 1,024 4,096 16,384

2 non-binary OLS 3.18 � 104 1.16 � 105 4.29 � 105 1.66 � 106

binary OLS 6.70 � 105 4.38 � 106 3.07 � 107 2.28 � 108

RS code 2.31 � 109 5.79 � 1010 1.42 � 1012

matrix code 1.59 � 105 8.71 � 105 3.62 � 106 1.68 � 107

3 non-binary OLS 4.77 � 104 1.73 � 105 6.44 � 105 2.49 � 106

binary OLS 1.72 � 106 1.26 � 107 8.33 � 107

RS code 2.38 � 109 6.06 � 1010 1.48 � 1012

matrix code 1.79 � 105 6.50 � 105 3.73 � 106 1.88 � 107

4 non-binary OLS 6.36 � 104 2.31 � 105 8.58 � 105 3.32 � 106

binary OLS 3.64 � 106 2.47 � 107 1.77 � 108

RS code 2.51 � 109 6.38 � 1010 1.55 � 1012

matrix code 2.02 � 105 7.42 � 105 4.55 � 106 1.78 � 107

5 non-binary OLS 7.95 � 104 2.89 � 105 1.07 � 106 4.15 � 106

binary OLS 6.12 � 106 4.16 � 107 2.97 � 108

RS code 2.65 � 109 6.70 � 1010

matrix code 2.03 � 105 1.19 � 106 4.55 � 106 2.22 � 107

TABLE 6
Delay Time of Decoder for 2b-ary Double Symbol Error

Correcting Codes

b code kk ¼ 256256 1,024 4,096 16,384

2 non-binary OLS 36.7 39.8 42.7 45.8
binary OLS 45.6 48.5 50.5 53.6
RS code 82.5 92.9 108.7
matrix code 43.8 51.5 54.9 56.2

3 non-binary OLS 36.7 39.8 42.7 45.8
binary OLS 47.1 49.3 51.5
RS code 83.1 97.1 108.4
matrix code 45.3 46.0 53.3 60.2

4 non-binary OLS 36.7 39.8 42.7 45.8
binary OLS 58.7 60.9 63.8
RS code 83.1 97.1 111.5
matrix code 45.5 48.5 55.3 57.3

5 non-binary OLS 36.7 39.8 42.7 45.8
binary OLS 54.7 57.6 60.7
RS code 84.4 96.4
matrix code 46.4 54.2 57.3 60.9
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The proposed 2b-ary double-symbol error correcting OLS code
is compared to the Reed-Solomon code and the matrix code. The
Reed-Solomon code is well-known as a multiple- error correcting
non-binary code. The correction by the RS code cannot be accom-
plished in parallel, however the RS code can be decoded by a uni-
versal decoding method [16], [20]. The RS code can be utilized for
PCM that requires a high-speed parallel decoding. The matrix code
of [11], [12] is a double-symbol error correcting code; information
data is arranged in an array; each row and each column are
encoded with a single-symbol error correcting and double-symbol
error detecting (SEC-DED) code and a single-symbol error detect-
ing (SED) code.

While the code of [11], [12] is a binary code, it can be easily
extended to non-binary codes. This comparison is based on uti-
lizing Reed-Solomon and parity codes for SEC-DED and SED;
moreover it also utilizes the row and column lengths to provide
the minimum total number of check symbols.

Figs. 4, 7, and 8 and Tables 1, 2, 3, 4, 5, and 6 show the comparison
results between these two codes and the OLS code. The check sym-
bol length of the proposed code is longer than the RS code. How-
ever, the parallel decoder [16] requires a considerable hardware
overhead. The same condition is also valid for any multiple-error
correcting non-binary codes known to be not detectable in parallel.
The proposed codes are always better than the matrix codes of [11],
[12] i.e. independently of the metric and the parameters employed
in the comparison of the check symbol length and the hardware
overhead. In addition, it should be pointed out that the construction
of the decoders for matrix codes with long Hamming distance is
rather difficult; this is not encountered in the proposed OLS codes
(this is the reason that Fig. 4 does not show the check symbol length
of thematrix codes except for the correctable symbol error of two).

5 CONCLUSION

This paper has presented a non-binary OLS code as applicable to
multilevel a PCM. A PCM utilizes a multilevel scheme that permits
to increase the storage density using ternary, quaternary and in the
near future, octal cells. The resistance drift that occurs in a multi-
level PCM due to the resistive characteristics of GST, may cause
errors in the stored information, thus degrading data integrity. The
proposed codes utilize a non-binary scheme that is capable of cor-
recting multi-symbol errors with a parallel decoder. The proposed
(n symbols, k symbols) t-symbol error correcting code uses the same
Hmatrix as an (n bits, k bits) t-bit error correcting binary OLS codes.
It utilizes a shorter check length and higher reliability for informa-
tion symbol length of approximately 103 or less than binary OLS
codes. In addition, the parallel schemes for encoding and decoding
in the proposed codes have been shown to be better than those for
binary OLS codes in terms of area, power consumption and delay.
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TABLE 7
Number of Transistors of Memory, Encoder and Decoder for Four-Level and Eight-Level PCMs

(a) Four-level PCM

Memory size
(word)

Number of transistors
in memory

encoder and decoder

non-binary OLS binary OLS RS code matrix code

1G 1.02 � 109 7.16 � 104 1.84 � 106 8.46 � 109 4.30 � 105

5G 5.12 � 109 7.16 � 104 1.84 � 106 8.46 � 109 4.30 � 105

10G 1.02 � 1010 7.16 � 104 1.84 � 106 8.46 � 109 4.30 � 105

(b) Eight-level PCM

Memory size
(word)

Number of transistors
in memory

Number of transistors for encoder and decoder

non-binary OLS binary OLS RS code matrix code

1G 7.68 � 108 1.07 � 105 4.56 � 106 8.83 � 109 4.70 � 105

5G 3.84 � 109 1.07 � 105 4.56 � 106 8.83 � 109 4.70 � 105

10G 7.68 � 109 1.07 � 105 4.56 � 106 8.83 � 109 4.70 � 105
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