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TABLE VII
ACCESSIBILITY-AWARE ROBOT BEHAVIORS

displays, to promote emotional engagement during the interac-
tion. Previous research with automated dialogue systems have
shown greater emotional bonds were generated between users
and a system that told jokes [71]. Telling jokes has also been
shown to improve users’ task enjoyment during HRI [72].
After delivering the punchline of the joke, the robot lifts its
hand to cover its mouth while giggling, as seen in Fig. 8(d). At
the end of the interaction, Brian 2.1, while displaying positive
valence, waves goodbye and thanks the user for participat-
ing [Fig. 8(e)]. A summary of the robot’s accessibility-aware
behaviors, based on verbal responses and accessibility levels
of participants are presented in Table VII. A video fea-
turing examples of accessibility-aware robot behaviors can
be found at http://asblab.mie.utoronto.ca/research-areas/social-
and-personal-robots.

3) Post-Interaction Questionnaire: After each interaction
scenario with the robot, the participants completed a question-
naire about the robot. The questionnaire incorporates the con-
structs from the social behavior questionnaire (SBQ) [73]. The
SBQ was developed specifically to measure user perceptions
of a robot’s social intelligence with varying types of social
behaviors [73]. Cronbach’s alpha has determined the SBQ to
be 0.7–0.9 [73], which is defined as substantial to excellent.

The validity of the scale has been verified by its ability to
obtain statistically significant results, p < 0.05, indicating that
participants give socially intelligent agents significantly higher
ratings for all the constructs of the SBQ than nonsocially
intelligent agents [73]. The constructs used in our question-
naire include: altruism, assertiveness, competence, dutifulness,
empathy, helpfulness, modesty, responsibility, sociability, sym-
pathy, and trust. The detailed questions that we have used
for these constructs are provided as supplementary material.
Responses to the questionnaire were obtained by each partic-
ipant indicating his/her agreement with each statement using
a five-point Likert scale (1 = strongly disagree, 2 = disagree,
3 = neutral, 4 = agree, and 5 = strongly agree).

D. Results and Discussion

The results of the interaction experiments were analyzed
to determine the performance of the automated accessibility
classification system as well as the influence of the two robot
behavior types on the accessibility levels of the participants.
Questionnaire responses were also utilized to determine if the
participants perceived one of Brian 2.1’s behavior types to be
more socially intelligent than the other.

1) Accessibility Classification: We compared the most fre-
quent accessibility levels of the participants obtained by the
robot during each stage of the interactions for both behavior
types with a self-study report from the participants. The com-
parison was used to analyze the performance of the robot’s
ability to detect the participants’ accessibility levels during
HRI. For the self-study, each participant, via playback video,
was asked during each of the stages of interaction to identify if
he/she was either feeling open to the interaction with the robot,
somewhat open or not open to the interaction, where open-
ness is defined by his/her level of comfort and engagement.
A three level scale was created to correlate these three levels
of openness to the accessibility levels of NISA. Level 1 of the
self-study was associated with accessibility level I of NISA.
Level 2 of the self-study was associated with levels II and III
of NISA. Level 3 of the self-study was associated with level IV
of NISA. This three level scale was utilized because the par-
ticipants themselves were not knowledgeable of NISA or how
it classifies accessibility levels and hence, it would be difficult
for them as untrained users to distinguish between accessibility
levels II and III.

Overall the multimodal static body pose estimation and
accessibility classification system appropriately matched 75%
of the self-reported levels for all the interactions for both
behavior types. Namely, 73% of the self-reported level 3 rat-
ings were matched with NISA accessibility level IV clas-
sifications of the automated system. No poses during these
interactions were classified as NISA accessibility level III.
Eighty-five percent of the self-reported level 2 ratings were
matched with NISA accessibility level II from the automated
system. Forty-eight percent of the self-reported level 1 rat-
ings were matched with NISA accessibility level I from the
automated system. It should be noted that overall only seven
participants self-reported a small number of their poses as level
1. The poses that were not identified as NISA accessibility
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TABLE VIII
PARTICIPANT ACCESSIBILITY LEVELS

level I by the automated system were instead classified as level
II. Further investigation of these latter level 1 poses found that
the majority of them included neutral or toward lower and
upper trunk orientations with crossed arms. NISA identifies
these poses as higher accessibility levels due to the importance
of the trunk orientations over the finer-scaling arm orienta-
tions. A two-tailed Wilcoxon signed rank test showed that no
statistically significant difference exists between the accessi-
bility levels of the automated system and the openness levels
of the self-study report, z = 0.393 and p = 0.695.

2) Comparison of Robot Behavior Types: In total, 1494 dif-
ferent static poses were obtained and classified by the
robot during the interactions using the multimodal pose
estimation technique, with 724 poses obtained during the
nonaccessibility-aware interactions and 770 poses obtained
during the accessibility-aware interactions. Static poses were
obtained for every participant during both types of interactions.
Table VIII summarizes the number of static poses identified
for each accessibility level and robot behavior type. For the
nonaccessibility-aware robot interactions, 29.0% of the poses
were classified as accessibility level IV, 0% as level III, 65.9%
as level II, and 5.1% as level I. Whereas for the accessibility-
aware robot interactions, 52.1% of the poses were classified
as level IV, 0% as level III, 45.2% as level II, and 2.7% as
level I. On average, the participants interacted for 11 min with
the nonaccessibility-aware robot (6 min during the RT inter-
action and 5 min during RRF interaction) and 12 min with
the accessibility-aware robot (7 min during the RT interaction
and 5 min during RRF interaction).

We hypothesized that the participants’ accessibility levels
would be higher during interactions with the accessibility-
aware robot than during interactions with the nonaccessibility
aware robot. A two-tailed Wilcoxon signed rank test was
utilized to test this hypothesis. The results showed that the
accessibility levels of the participants were statistically higher
during interactions with the accessibility-aware robot, z = 4.0,
p < 0.001. Sixteen participants had a most frequent accessibil-
ity level of II when interacting with the nonaccessibility-aware
robot, however, when they interacted with the accessibility-
aware robot, they had a most frequent accessibility level of IV.
Seven participants had the same most frequent accessibility
level of II and one participant had the same most frequent
accessibility level of IV for both robot behavior types. These
results show that, in general, the participants were more acces-
sible toward the social robot when it had the capability to both
recognize and respond to their accessibility levels.

TABLE IX
MEAN QUESTIONNAIRE CONSTRUCT RESULTS

3) Questionnaire Results: A summary of the mean partic-
ipant ratings for the constructs of the post-interaction ques-
tionnaire are presented in Table IX. The inter-reliability of
the statements in each construct were also calculated utiliz-
ing Cronbach’s alpha. Construct reliability was improved by
removing statistically weak statements [74]. All the constructs
obtained alpha values of 0.6 or higher except for Dutifulness,
which had an alpha value of 0.2 for the nonaccessibility-aware
robot behavior type (Table IX). Therefore, this construct was
removed from further analysis. Alpha values of 0.6 or higher
are acceptable for constructs with a small number of items,
i.e., 2 or 3 [75].

A Wilcoxon signed rank test was conducted to compare
the overall results for the two robot behavior types. The
results showed that the accessibility-aware robot behavior
type was perceived to be significantly more socially intel-
ligent than the nonaccessibility-aware robot behavior type,
z = 4.332, p < 0.001. This result is similar to the study
conducted by de Ruyter et al. [73] that found participants
perceived a teleoperated iCat robot with social etiquette to
be more socially intelligent than when the robot was socially
neutral.

It is interesting to note that the competence and assertive-
ness constructs had the same or slightly higher mean ratings
for the nonaccessibility-aware behavior type when compared
to the accessibility-aware behavior type. With respect to com-
petence, the same mean rating may have been obtained, since
for both behavior types the robot had the knowledge to com-
plete the necessary interaction tasks, which is an indicator
of competence [66]. Namely, the robot was always able to
identify correct or incorrect participant responses to questions
during the RT interaction and find a restaurant during the RRF
interaction. Assertiveness may have been rated a bit lower
for the accessibility-aware behavior type due to it display-
ing more body movements/gestures. In [76], it was found that
an increased amount of body movements was an indicator
of nonassertiveness during human–human social interaction.
However, in general, assertiveness is linked to having the
capability to express emotions and recognize an interaction
partner’s affective state [65].



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

McCOLL et al.: CLASSIFYING A PERSON’S DEGREE OF ACCESSIBILITY FROM NATURAL BODY LANGUAGE 13

As evident from the questionnaire results for both the
accessibility-aware robot and the nonaccessibility-aware robot
behaviors, the participants rated the robot behaviors as either
neutral or positive, and did not have negative attitudes toward
the robot. We postulate that this supports the lack of accessibil-
ity level III poses identified during the experiments. Namely,
backwards leans and leans away from an interactant (the robot
in our case) have been found as indicators of a negative attitude
toward the interactant [27]–[29].

4) Discussion: People involved in social interactions gen-
erally display a series of static poses defined as resting poses
which can define natural units of behaviors, affect, and rap-
port. In order to be considered a resting pose, a person needs to
hold the pose. Through various clinical and research observa-
tions by Davis and Hadiks [30] and Davis [34] this has been
defined to be at least 4 s. This was also verified in the pre-
sented experiments, where participants assumed 1494 different
static poses during interactions with Brian 2.1. In future work,
these static poses that represent a person’s accessibility level
can be combined with dynamic arm and hand gestures in
order to determine other affective states that may be present
during HRI.

The presented human body pose identification technique
utilizes skin color information and 3-D data of a person to
generate an indirect ellipsoid model. Namely, a new ellipsoid
model is created for each new pose. This technique allows the
size and shape of the ellipsoid model to accurately estimate
the poses of people of various sizes and shapes automatically,
without relying on large amounts of training data. Even though
the technique requires that the lower arms of a user be exposed,
none of the participants commented on this constraint as a lim-
itation for their interaction. As an alternative approach, future
work could consider generating 3-D human kinematics models
(see [77]), with the appropriate body part centroids and joints
defined to determine accessibility.

During these experiments, the participants stood approxi-
mately 1.2–1.8 m from the robot while interacting with it.
The robot is capable of identifying each participant’s distance
utilizing the Kinect sensor. This was within our sensing tech-
nique range of 1.0–3.5 m and also consistent with the social
distance determined for interpersonal one-on-one communica-
tion by Hall [78] in his work on proxemics. If Brian 2.1 is
mounted on a mobile platform, it can also actively maintain
the distance range for social interaction.

The scenarios presented in this paper are specifically
designed for one-on-one social human–robot interaction with
a static robot. Hence, the presented system only identifies the
closest person as a user. Brian 2.1 can utilize the proposed
automated static body language identification and classifica-
tion system for a number of social interaction scenarios in
which the robot can provide information to individuals such
as at a help desk at a library, shopping mall, or museum, or
at a reception desk in an office building. The robot can also
be used in long-term care facilities to assist with activities of
daily living, schools as a tutor, and private homes for various
information providing and reminders tasks.

The human identification technique proposed herein, which
uses the MOG, connected component, and head and shoulders

contour technique for identifying people in a scene can be used
to identify the static body language of multiple users. It can
easily be extended to more than one person by detecting if
multiple people are within a certain interaction distance from
the robot. The connected component analysis and head and
shoulders contour technique can be used to identify multi-
ple people within this distance. Then microphone arrays can
be used to localize which user is speaking [79]. Furthermore,
the technique can deal with slowly changing background
environments, since the MOG model is updated iteratively.

VI. CONCLUSION

In this paper, we implemented the first automated static
body language identification and categorization system for
designing an accessibility-aware robot that can identify and
adapt its own behaviors to the accessibility levels of a per-
son during one-on-one social HRI. We presented two sets of
social HRI experiments. The first consisted of a performance
comparison study which showed that our multimodal static
body pose estimation approach is more robust and accurate in
identifying a person’s accessibility levels over a system which
utilized the Kinect SDK joint locations. The second set of
HRI experiments investigated how individuals interact with
an accessibility-aware social robot, which determines its own
behaviors based on the accessibility levels of a user toward
the robot. The results indicated that the participants were more
accessible toward an accessibility-aware robot over a nonac-
cessibility aware robot, and perceived the former to be more
socially intelligent. Overall, our results show the potential of
integrating an accessibility identification and categorization
system into a social robot, allowing the robot to interpret,
classify, and respond to adaptor style body language during
social interactions.

Our results motivate future work to extend our technique
to scenarios which may include interactions with more than
one person and when individuals are sitting. Furthermore,
we will consider extending the current system to an affect-
aware system which will consider the fusion of other modes
of communication in addition to static body language, such as
for example, head pose and facial expression as investigated
in [80] as well as dynamic gestures.
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