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Fig. 7. The precision of bit.ly URLs in terms of country. X
axis means the number of followers of the updating users.
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Fig. 8. The FPR of bit.ly URLs in terms of country. X axis
means the number of followers of the updating users.

5 Inference Attacks in the RealWorld

In this section, we introduce the inference attacks in the
real world. We consider two inference attack scenarios: (i)
inferring which URLs target users click on and (ii) inferring
who clicks on the URLs updated by target users.

5.1 Attack I: Inferring Visited Shortened URLs by
Target Users

In Attack I, our attack system identifies whether a target
user clicks on shortened URLs posted by his or her follow-
ings. The results of this attack is a set of URLs that the
target user may click on. The procedures of this attack are
as follows:

1) The attack system chooses a target Twitter user and
extracts his or her information from Twitter.

2) The system monitors the click analytics of all short-
ened URLs posted by the followings of the target
user.

3) When the system notices changes in the click ana-
lytics, which indicate a new visitor to the shortened
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URL, the system extracts the visitor’s information
from the click analytics.

4) The system compares the information about the vis-
itor with the known information the target user. If
both pieces of information match, it infers that the
target user clicks on the shortened URL.

Fig. 9 shows the overall architecture consisting of three
modules: profiling module, monitoring module, and match-
ing module. First, the profiling module obtains the infor-
mation of the target user from the target user’s profile and
timeline, as mentioned in Sections 3.3 and 3.4. Second,
the monitoring module extracts the shortened URLs from
the tweets posted by the followings of the target user and
monitors the changes in the click analytics of the shortened
URLs. We create a Twitter user (monitoring user) who
follows all the followings of the target user in order to
access all tweets that the target user may view. Lastly, the
matching module compares the information about the new
visitor with the information about the target user when
the monitoring module notices the changes in the click
analytics. If the matching module infers that the new visitor
is the target user, it includes the corresponding shortened
URL in a candidate URL set.

The final candidate URL set may not accurate due to two
reasons. First, it may contain URLs clicked on by other
Twitter users who have the same features as the target user
(false positives). There are many Twitter users who receive
the same shortened URLs seen by the target user. Some
of them may share the same information as the target user
and click on a shortened URL that is being monitored by
our system. In such cases, the system may conclude that
the shortened URL clicked on by the target user.

Second, the final candidate set may not include a short-
ened URL clicked on by the target user when the target user
clicks on the shortened URL in different country and/or
platform (false negatives). For example, when a target user
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Fig. 10. Overall architecture of the attack II

typically uses an iPhone in the USA, our attack system only
considers changes in click analytics involving the iPhone
and the USA. However, it is possible that the target user
changes his smart phone or travels to a foreign country. If
he clicks on the shortened URLs in such environments, our
system cannot notice the click events. We reduce the false
negatives by promptly adding the new environment of a
target user into his profile information. Therefore, the false
negatives only temporarily occur and do not much affect
the overall results.

5.2 Attack II: Inferring Visitors of Shortened URLs

In Attack II, our attack system identifies who clicks on
shortened URLs uploaded by a target user. We first find a
target Twitter user who periodically updates bit.ly or goo.gl
shortened URLs and identify candidates who click on the
shortened URLs updated by the target user. The procedures
of this attack are as follows:

1) The attack system selects a target Twitter user who
periodically updates shortened URLs.

2) The system monitors the click analytics of shortened
URLs updated by the target user.

3) When the system notices that there is a visitor of
the shortened URL, it extracts the visitor information
from the click analytics.

4) The system compares the information about the vis-
itor with the known information of the followers of
the target users.

Fig. 10 shows the overall architecture consisting of
the three modules (monitoring, profiling, and matching
modules), which are similar to those of Attack I. First, the
monitoring module receives the shortened URLs updated
by the target user and extracts their click analytics. Unlike
Attack I, the monitoring user of Attack II just follows
the target user to receive his or her shortened URLs.
Next, the profiling module collects the information of the
followers of the target user when the monitoring module

notices a new visitor. We collect the information of the
followers on demand to obtain up-to-date information of
the old followers and information of new followers. Lastly,
the matching module compares the information of the
new visitor with the information of the followers. If the
matching module infers that the new visitor is a follower
of the target user, it includes the user in a candidate user
set.

The final candidate user set may contains wrong candi-
date users because the target user has a number of followers
who share the same features. For instance, if an iPhone user
who is staying at the USA clicks on the shortened URL,
some followers of the target user using iPhone and staying
at USA can be candidate users. However, in most cases,
the number of candidates is smaller than the number of
followers of the target user, so our attack is better than
a random guessing attack that considers all followers as
candidates. Moreover, if some followers of the target user
have unique features (e.g., lives in Rwanda), we can exactly
infer the shortened URLs clicked on by them.

5.3 Target User Selection
We choose target users of Attack I according to the
following four criteria. First, we choose target users who
have identifiable and public profile information. Also, we
select users who use well-known applications, such as the
official Twitter applications for smart phones. If we select
users who use unpopular applications, the inference system
will identify the target user with a high accuracy, but it
gives biased results. Therefore, we conduct experiments
with common users to prove that our system has good
performance in most cases.

Second, the target users should follow some Twitter users
frequently posting bit.ly or goo.gl URLs because we want
to obtain enough experimental results. If no shortened URL
appears in the timeline of the target user, we cannot perform
our attacks.

Third, the target users must actively use Twitter. If we
select an inactivate user as a target user, we cannot obtain
enough experimental data. Our ideal target users are Twitter
users who frequently check their timeline and click on
URLs on their timeline.

Lastly, the target users need to post or retweet a tweet
including the shortened URLs that he clicks on. We assume
that we successfully infer the clicks on the shortened URLs
if the target user posts a tweet with the shortened URL
in a candidate URL set. In order to find qualified target
users for the experiments, we manually search goo.gl or
bit.ly strings on Twitter and review their timeline. However,
the preceding criteria are used only to obtain enough
experimental data and to conduct evaluation. They are not
strongly related to the accuracy of our attacks. Any Twitter
user can be a target user.

In Attack II, we choose target users who frequently
update shortened URLs for obtaining enough experimental
data. Twitter accounts of news, advertisements, and celebri-
ties are the best target users because they periodically up-
date shortened URLs and have a large number of followers.
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We manually find target users by searching goo.gl or bit.ly
strings on Twitter.

5.4 Data Collection

We crawl Twitter data using two sets of Twitter API
methods: Streaming APIs and REST APIs. The Streaming
APIs allow us to monitor target users in real time. We
use the REST APIs for crawling profile pages, timelines,
followers, and followings. The REST APIs, however, have a
rate limit: a host is permitted 150 requests per hour. In order
to overcome the rate limit, we change the IP address of the
crawling servers when the servers exceed the rate limit. We
used 10 servers and 100 IP addresses to crawl Twitter data.
We also collect the click analytics of the shortened URLs
as mentioned in Section 4.1.

We collected 219,459 user’s profiles, 197,879 user’s
timelines, 183,176 user’s favorites and monitored 3,106
goo.gl URLs and 26,532 bit.ly URLs. The collection lasted
for about two month from March 2012 to April 2012.

5.5 Evaluation

As mentioned in Section 4, it is difficult to correctly
evaluate our attack system because we cannot obtain click
logs of target users. Thus, in this section, we use tweets
and favorites of target users to evaluate our attack system
instead of click logs. We assume that Twitter users include
URLs in their tweets and favorite tweets with URLs only
when they previously visit the URLs. Based on the assump-
tion, we check whether a target user includes the URL
inferred as visited in his (re)tweets or favorites it in the
near future to validate the correctness of our inference. To
clarify, suppose that our system infers that a Twitter user A
visits a shortened URL U. We collect the timeline and the
favorites of the user A and check whether a tweet containing
the shortened URL U exists. If we find the shortened URL
U in the timeline or favorites of the user A, we are certain
that the system successfully infers shortened URLs visited
by the user A.

5.5.1 Attack I

We evaluate the accuracy of Attack I by introducing the
following three metrics:

P1 =
|U
⋂

RT|
|U|

,

P2 =
|Curls

⋂
RT|

|Curls|
,

P3 =
|Nurls

⋂
RT|

|Nurls|
,

where U is a set of all shortened URLs posted by followings
of the target user, Curls is a candidate URL set including
shortened URLs inferred as visited by the target user, Nurls

is a non-candidate URL set including shortened URLs

inferred as unvisited, and RT is a retweeted URL set includ-
ing shortened URLs which are in the target user’s timeline
or favorite lists, satisfying the following conditions:

Curls ⊆ U,Nurls ⊆ U,RT ⊆ U,
Curls ∪ Nurls = U,Curls ∩ Nurls = φ.

Therefore, P1 indicates the fraction of retweeted shortened
URLs, P2 indicates the fraction of retweeted candidate
URLs, and P3 indicates retweeted non-candidate URLs.

The final values of the three metrics are as follows: P1 is
0.032, P2 is 0.048, and P3 is 0.003. P2 is 1.5 times higher
than P1 and 16 times higher than P3, which implies that we
can successfully categorize all shortened URLs into a set of
visited URLs and a set of unvisited URLs. The target users
normally post tweets containing shortened URLs included
in the candidate URLs set and rarely post tweets with
shortened URLs outside the candidate URLs set. According
to boyd et al. [2], approximately three percent of tweets
are likely to be retweeted. This percentage is similar to our
calculation of P1, 0.032; therefore, we conclude that the
value of P1 is trustworthy.

Next, we introduce two different metrics to view the
results from a different angle:

P4 =
|Curls

⋂
RT|

|RT|
,

P5 =
|Nurls

⋂
RT|

|RT|
.

P4 indicates the fraction of retweeted URLs included in
the candidate URL set and P5 indicates the fraction of
retweeted URLs included in the non-candidate URL set.

The final values of the two metrics are as follows: P4 is
0.952 and P5 is 0.048. We observe that P4 is much higher
than P5, which implies that most of the shortened URLs
that are in the timeline or favorites of the target users are
inferred as candidate URLs. Therefore, we conclude that a
shortened URL is highly likely to be retweeted or favorited
by the target user if it is included in the candidate set.

The problem of the metrics P4 and P5 is that we can
simply achieve the best results when we include all the
shortened URLs in the candidate URL set. To show that
we correctly infer the candidate URL set, we compute the
reduction ratio RR, which represents how much we reduce
the number of candidate URLs from the number of all
shortened URLs posted by the followings of the target user.

RR is computed as follows:

RR =
|Curls|

|U|
.

Table 5 shows the reduction ratios of shortened URLs
from the two URL shortening services: the average value
of the reduction ratio is 0.669. Since the reduction ratio
is quite smaller than P4, we can conclude that our attack
system intelligently reduces the candidate set. We have a
larger number of bit.ly shortened URLs than that of goo.gl
shortened URLs because the number of bit.ly shortened
URLs is fairly larger than that of goo.gl on Twitter.
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TABLE 5
The monitored shortened URLs and RR for each URL

shortening services in Attack I.

# of shortened URLs RR
goo.gl 2,278 0.584
bit.ly 25,816 0.674
Total 28,094 0.669

In addition, the value of RR depends on click tendency
of the target users. If the target users click on all of the
shortened URLs in U, RR becomes 1 so that high RR does
not always indicate that the system is performing poorly.

5.5.2 Attack II
We evaluate the accuracy of Attack II by introducing the
following two metrics:

P6 =
|RTC |

|RTF |
,

P7 =
|RTN |

|RTF |
,

where RTF is a set of shortened URLs of a target user
retweeted or favorited by his or her followers, RTC is a set
of shortened URLs retweeted or favorited by the candidate
users, and RTN is a set of shortened URLs retweeted by the
non-candidate users, satisfying the following conditions:

RTC ⊆ RTF ,RTN ⊆ RTF ,

RTC ∪ RTN = RTF ,RTC ∩ RTN = φ.

Therefore, P6 indicates the fraction of retweeted URLs by
candidate users and P7 indicates the fraction of retweeted
URLs by non-candidate users.

If the attack system correctly infers candidate users, P6
should be higher than P7. In this experiment, we monitor
20 target Twitter users and each target user has a number of
followers between several thousands to tens of thousands.
We compute P6 and P7 of each target user: the average
value of P6 is 0.86 and the average value of P7 is 0.14.
As we expected, P6 is much higher than P7 so that our
attack system can successfully distinguish candidate users
from non-candidate users.

Again, we should consider the reduction ratio RR repre-
senting how much we reduce the number of candidate users
from the number of the target user’s followers as follows:

RR =
|RTC |

|followers|
.

Table 6 shows the results for each URL shortening
services: the average value of RR is 0.474 which is fairly
smaller than P6. Thus, our attack system infers about half
of the target user’s followers as the candidate users on
average. This result is much better than a random guessing
attack because the random guessing attack should consider
all followers as candidate users. The reduction ratio in the

TABLE 6
The monitored shortened URLs and RR for each URL

shortening services in Attack II.

# of shortened URLs RR
goo.gl 827 0.474
bit.ly 716 0.768
Total 1,544 0.669

TABLE 7
Retweeted tweets containing a shortened URL according

to the number of followers.

# of followers # of tweets # of retweeted tweets
100 – 1k 22,442 (0.57) 833 (0.04)
1k – 10k 13,224 (0.34) 1,216 (0.09)
10k – 100k 2,930 (0.08) 882 (0.30)
100k – 1000k 453 (0.01) 277 (0.61)
Total 39,049 3,208 (0.08)

goo.gl case is lower than in the bit.ly case because goo.gl
provides more detailed information than bit.ly.

5.5.3 Uniqueness of a shortened URL
A tweet containing a shortened URL can be read by users
who are not followers of the user who posted the tweet,
via retweets or other channels, so non-followers may click
on the shortened URL. Therefore, when inferring candidate
users, our inference system needs to consider not only the
followers of a user but also those who can read the users
tweets. In Attack II, however, we conduct the experiment
under the assumption that only the followers of a user
will click on a shortened URL, even though non-followers
may affect the experimental results. Specifically, RTC may
contain a shortened URL clicked by a non-follower when
the non-follower has the same features as a follower of the
user and the follower retweets the shortened URL without
clicking on it.

However, the effect of non-followers on the experimen-
tal results is negligible because the number of clicks by
the non-followers is small. To demonstrate this point, we
determine the number of retweeted tweets and the number
of users who posted the same shortened URL. We crawled
tweets that were older than one day because we wanted
to collect tweets that had enough time to be retweeted.
To avoid bias in the results, we randomly collected tweets
that contained a shortened URL by using a Twitter search
API with keywords goo.gl and bit.ly. We collected 17,227
tweets that contained goo.gl URLs and 21,822 tweets that
contained bit.ly URLs, from June 2014 to July 2014.

First, we determine the number of retweeted tweets that
contained shortened URLs. As shown in Table 7, overall,
8% of the collected tweets were retweeted. If the users who
have more than 100,000 followers posted tweets, 61% of
those tweets were retweeted. However, these tweets account
for only 1% of the collected tweets. If the users who
have less than 1,000 followers posted tweets, only 4% of
those tweets were retweeted, but they account for 57% of
the collected tweets. Consequently, we conclude that most
tweets are not retweeted.
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Fig. 11. The ratio of bit.ly URLs according to the number
of users who post the same bit.ly URL.
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Fig. 12. The distribution of the number of hours that users
do not post any tweets

Next, we determine the number of users who post the
same shortened URL, while excluding retweets. Unfor-
tunately, we can not know the exact number of tweets
that contained a specific URL because the Twitter search
API returns only a small number of tweets containing
search keywords. Instead, we use the click analytics of
the collected bit.ly URLs to inspect the number of users
who post the same bit.ly URL on Twitter. Fig. 11 shows
that approximately 69% of the bit.ly URLs are posted by a
single user on Twitter. The next highest proportion is only
8%, which represents the proportion of bit.ly URLs posted
by two users.

We can conclude that the effect of non-followers on the
experimental results in Section 5.5.2 is negligible because
most tweets are not retweeted and most shortened URLs are
posted by a single user. Therefore, the evaluation results of
Attack II are reliable.

6 Advanced Inference Attack
In this section, we introduce an advanced inference attack
that decreases attack overhead while increasing inference
accuracy by considering when target users frequently use
Twitter. If we are assured that a target user does not
use Twitter during some time periods (e.g., in the middle
of night), we do not need to collect and inspect click
logs recorded in the time periods. This exclusion not only
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Fig. 13. The FPR of goo.gl URLs in the advanced
inference attack.

reduces attack overhead (e.g., OAuth tokens and system
uptime), but also increases inference accuracy (e.g., re-
ducing false positives). We first analyze tweet history of
Twitter users to build time models, and then evaluate the
advanced attack by conducting experiments with virtual
users following the time models.

6.1 Time Model

We first build time models that represent when Twitter users
use Twitter by using their tweet history that records when
they post tweets. We anticipate that the difference between
a time model and the tweet history is small because we
mainly focus on heavy Twitter users who frequently post
tweets during almost all their waking hours. We use time
models to configure time-based behaviors of virtual users
in a simulated environment.

The procedure for obtaining time models is as follows.
First, we randomly choose 5,000 Twitter users from Twitter
public timeline and collect each of their last 30-days tweets.
Next, for each user, we divide a day into 24 hour buckets
and investigate the number of idle hour buckets that the user
never posts tweets during the last 30 days. For example, if
a user never posts tweets from 2:00 a.m. to 5:00 a.m. and
from 10:00 p.m. to 11:00 p.m. during all of the last 30 days,
the number of his idle hour buckets is four. Fig. 12 shows
the distribution of the number of idle hour buckets. On
average, the Twitter users we analyzed do not post tweets
five hours a day. Interestingly, approximately five percent
of the Twitter users post tweets in all day; we anticipate
that they are bot accounts. Lastly, we select three time
models for experiments: (i) posting no tweet five hours a
day, (ii) posting no tweet one hour a day, and (iii) posting
no tweet ten hours a day. The first one is the most common
time model whereas the remaining two models are extreme
cases.

6.2 Experiment Setup and Data Collection

We establish the simulated environment of Section 4 while
varying the behaviors of virtual users according to the
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time models explained in Section 6.1. We generate four
variations of each virtual user in Section 4: a user using
Twitter 24 hours a day, a user using Twitter 23 hours a
day, a user using Twitter 19 hours a day, and a user using
Twitter 14 hours a day. For simplicity, we set up the idle
hour buckets of each virtual user are continuous and do
not vary day-to-day. Such settings are acceptable because
whether the idle hour buckets are continuous or not does not
affect much the experiment results. By monitoring a target
user, we can exclude logs of non-active hours, regardless
of whether these non-active hours are continuous or not.
The important thing is how many hours the target user is
non-active.

We monitored 2,570 goo.gl URLs and 1,550 bit.ly URLs
from November 8 to November 29, 2013 in the same way
as the previous experiments.

6.3 Evaluation

We evaluate the results of our experiment according to
inference accuracy and attack overhead. We observe slightly
increased precision and decreased FPR when we consider
time models. Fig. 13 and Fig. 14 show that FPR decreases
as virtual users rarely click on. If the X axis value is zero,
the users click the shortened URLs all the time that the
previous virtual users did. If the X axis value is 10, the users
did not click the shortened URLs during 10 hours a day. The
inference system excludes the click logs in the time periods
that the users do not click. Therefore, the inference system
can reduce false positive clicks when the time periods that
users do not click are long. From the results, we can confirm
that the performance of the inference system can improve
even when the system does not monitor Twitter all the time.

Even though the improvement of the accuracy is
marginal, the important aspect is that we can reduce the
overhead while maintaining good performance. We used
Amazon EC2 pricing to calculate the benefits gained by re-
ducing overhead. In Amazon EC2 pricing, $0.45 is required
per hour for the use of general purposes. In Section 5, we
used 100 IP addresses for two months to crawl and monitor

data. If we use Amazon EC2, $0.45×100×60 = $2, 700 is
required to do the same experiment. Therefore, we can save
$540 to do the experiment in Section 5 because, on average,
Twitter users do not post tweets for five hours a day. If
this remained hours are used for additional monitoring,
the advanced inference system can monitor one more user
because 25 hours remain. These benefits make the attackers
can attack more users at the same time.

7 Discussion
In this section, we describe limitations and countermeasures
of our inference system. We also introduce how attackers
can exploit our attack to conduct advanced attacks to moti-
vate service providers to develop countermeasures against
our attack.

7.1 Limitations

Our inference attack method has some limitations due to
the restrictions in the given information. First, we cannot
guarantee the correctness of the given location information
because some users do not reveal their exact location
information on Twitter. Second, the given browser and
platform information is also restricted because some client
applications do not reveal the exact platforms that they
support. Third, even when we are able to identify specific
Twitter users, many users have the same information as
the identified Twitter users have. Therefore, the results of
our inference cannot be 100% guaranteed. However, if we
can obtain information about a target user from different
channels (e.g., if we are personally acquainted with the
target,) we can increase the probability of succeeding with
our inference attacks.

7.2 Countermeasures

To cope with our attacks, the publishing policy of public
click analytics should be changed. A simple measure of
prevention is by delaying the update to the click analytics
of shortened URLs. If the click analytics is updated every
minute or every tens of minutes, the changes in the click
analytics may include multiple click events so that inference
attacks have difficulties in differentiating an individual from
the group of click events. In addition, providers can add
noise information to the click analytics in order to prevent
exact inference, as the differential privacy does [9].

7.3 Applications

Our inference attack can be used to develop a number
of applications. First, attackers can use it for targeted
marketing or spamming because they can infer their target
users’ preferences by using which URLs they click on, such
as music interests, political inclination, or favorite products.
Second, attackers can use it for cyberstalking on Twitter.
Anyone can stalk a target user by creating a Twitter account
that follows everyone whom the target user follows to peek
at the tweets that the target user receives. Third, active
inference attacks are possible as in Section 1. If an attacker
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creates a shortened URL and sends the shortened URL to
the target user, who then clicks on the shortened URL, the
attacker can obtain information, such as the target user’s
current location and platform, from the click analytics.
Consequently, service providers should consider these cases
to protect their customers from our attack.

8 RelatedWork
8.1 Browser History Stealing

There are several types of history stealing attacks. First, at-
tackers exploit Cascading Style Sheet (CSS) visited styles.
They use the fact that browsers display visited links dif-
ferently from unvisited links. This attack is first introduced
in 2000 [3], and it has been discovered several times [4],
[8]. In the academic community, Janc et al. propose a CSS
based history stealing attack [16]. They analyze behaviors
of each browser related to CSS visited styles and build a
system to detect browsing history of users efficiently.

Second, attackers exploit browser and DNS cache to
conduct history stealing attacks. Felten et al. describe
attack methods using browser and DNS cache [10]. They
measure the time required to load web pages and to look
up DNS. Jackson et al. enforce a same-origin policy to
prevent history stealing attack [14]. They implement a
Firefox extension to enforce the policy on the browser
cache and visited link. Jakobsson et al. personalize URL
to prevent sniffing of browser cache and history [15].
Attackers sniff DNS caches to infer visited sites of users.
Grangeia proposes a technique of DNS cache sniffing [11].
Krishnan et al. describe how to leak user’s privacy by using
DNS prefetching [17].

Third, some researchers propose attack methods to steal
browsing history using user interactions and side-channels.
Weinberg et al. exploit CAPTCHA to deceive users and to
induce user’s interaction [29]. They also use a webcam to
detect the light of the screen reflected at the user’s face,
which can be used to distinguish the colors of visited from
those of unvisited links.

The conventional history stealing attacks usually assume
that victims visit a malicious web page or victims are
infected by malware. However, our inference attacks do not
need to make these assumptions. Our inference attacks only
use the combinations of publicly available information, so
anyone can be an attacker or a victim.

8.2 Privacy Leaks from Public Information

Previous studies have considered attack techniques that
cause privacy leaks in social networks, such as inferring
private attributes and de-anonymizing users. Most of them
combine public information from several different data
sets to infer hidden information. Some studies introduce
de-anonymizing attacks in social networks. Backstrom et
al. [1] try to identify edges existence in an anonymized
network, and Narayanan and Shmatikov [20] identify Net-
flix records of known users using only a little bit of
data about users. Furthermore, they combine their results

with IMDb data and inferred user’s political preferences
or religious view. Narayanan and Shmatikov [21] also
prove that users who have accounts in both Twitter and
Flickr can be recognized in the anonymous Twitter graph.
Wondracek et al. [30] propose a de-anonymized attack
using group membership information obtained by browser
history stealing attack.

Other studies consider how to infer the private attributes
of users in social networks. He et al. [12] and Lindamood
et al. [18] build a Bayesian network to predict undisclosed
personal attributes. Zheleva and Getoor [31] show how
an attacker can exploit a mixture of private and public
data to predict private attributes of a target user. Similarly,
Mnislove et al. [19] infer the attributes of a target user by
using a combination of attributes of the user’s friends and
other users who are loosely (not directly) connected to the
target user. Calandrino et al. [5] propose algorithms infer-
ring customer’s transactions in the recommender systems,
such as Amazon and Hunch. They combine public data of
the recommender systems and some of the transactions of
a target user in order to infer the target user’s unknown
transactions. Chaabane et al. [6] propose an inference
attack to predict undisclosed attributes by using only music
interests. They derive semantics using Wikipedia ontology
and measured the similarity between users.

9 Conclusion
In this paper, we proposed inference attacks to infer which
shortened URLs clicked on by a target user. All the infor-
mation needed in our attacks is public information: the click
analytics of URL shortening services and Twitter metadata.
To evaluate our attacks, we crawled and monitored the
click analytics of URL shortening services and Twitter
data. Throughout the experiments, we have shown that our
attacks can infer the candidates in most cases.
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Appendix A
Problem Formalization
A.1 Attack Model

In this section, we formalize the inference attack described
in the previous sections. The inference attack consists of
three components: service, target user, and adversary.
• Service: Each service releases the metadata and/or

usage statistics of their users. The service updates the
data in real time and releases it in an aggregate form to
prevent privacy leakage. Services can be connected to
each other. The connected services consists of a main
service used primarily (e.g., online social networks and
blogs) and third party services supporting the usages
of the main service (e.g., URL shortening services,
location services, and photo sharing services).

• Target user: Any user who simultaneously uses the
connected services can be a target user. A target user
should have public information that can be exploited
to infer his private usage.

• Adversary: In our inference attack, an adversary does
not need to have private information or to exploit
complicate techniques. Anyone who can access the
released information can be an adversary. An adversary
constantly monitors the information released by the
services. Then, he tries to extract the private usage in-
formation of a target user by exploiting the information
released by the connected services.

The above three components are essential to our infer-
ence attack. Another essential requirement for the inference
attack is that there should be overlapping information
between the information released by the connected services.
If the overlapping information corresponds with the infor-
mation of a target user, an adversary can know that the
target user has used the connected services.

We define our inference attack based on the components
as follows:

Definition 1. Inference attack tries to detect a user who
simultaneously uses the connected services by matching the
overlapping information with the user information.

The outcome of an inference attack is a set of candidate
users whose information corresponds with the overlapping
information. The accuracy of our inference attack is in in-
verse proportional to the number of candidate users because
only one user is a target user among the set of candidate
users. Therefore, the accuracy of an inference attack is

1
|candidate users|

. The lower bound of the accuracy is
1
N

when the number of the candidate users is maximum which
means all users are candidate users. Therefore, the inference
system try to reduce the number of candidate users as much
as possible for better performance.

A.2 Algorithms

In this section, we propose algorithms to apply our infer-
ence attack in general situations. We first define user and
data models. Let U be user information released by the

main service. Let D be a dataset released by the third
party services. To protect the user’s privacy, third party
services provide the online dataset D in aggregate form
which consist of attributes a, values v and count of them c.
Let AU be an attribute set of U and AD be an attribute set
of D. We define U, D and their attribute sets as follows:

AU = {a | a is an attribute of U}

AD = {a | a is an attribute of D}

U = {(a : v) | a ∈ AU , v is a value of a}

D = {(a : v, c(t)) | a ∈ AD, v is a value of a,

c is the counter of a tuple (a : v) at time t}

Algorithm 1 Inference attack for a target user
Input: AC = AU ∩ AD

u = {(a : v) | a ∈ AC , v is a value of a} and u ⊆ U
d(t) = {(a : v, c(t) | a ∈ AC , v is a value of a, c(t) is a
counter of (a : v) tuple at time t} and ∃(a : v, c(t)) ∈ D
Output: Inferred time the user has used the service

history = {}

foreach observation time at t do
∆d(t) = {(a : v) | ∃(a : v, c(t)) ∈ d(t) s.t (c(t)−c(t − 1)) ≥
1}
if u ⊆ ∆d(t) then

history = history ∪ {t : u}
end

end
return history

Algorithm 1 shows the procedure of the inference attack
in the case of a single target user and a single third party
service. Usually, the attributes of U and D differ from
each other. Therefore, the system has to calculate a set of
common attributes of AU and AD, which is defined as AC .
∆d(t) is the differences between d(t) and d(t − 1). If a user
u is a subset of the ∆d(t), the inference system infers that
the user has used the service at time t. In this way, we
can obtain the service usage history of the user, which is
defined as follows:

history = {(t : u) | u exist at time t},

where (t : u) means that a user u used the service at time
t.

Algorithm 2 shows the procedure of the inference attack
on multiple users. When our inference system obtains ∆d(t),
the system compares it with each user. If ui is a subset of
∆d(t), the system adds ui into inferred history with time t.
Finally, we can have the usage history that shows which
users used the service at time t.

Algorithm 3 shows the procedure of the inference attack
in case of multiple third parties when each dataset of third
party services has different attributes and has few attributes
than the user has. In some cases, it is not enough to infer
user’s behavior using only one third party database due to
a lack of information. Algorithm 3 uses multiple dataset to
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Algorithm 2 Inference attack for multiple target users
Input: AC = AU ∩ AD

u1, u2, ..., un : n users
ui = {(a : v) | a ∈ AC , v is a value of a} and ui ⊆ U
d(t) = {(a : v, c(t)) | a ∈ AC , v is a value of a, c(t) is the
counter of a tuple (a : v) at time t} and ∃(a : v, c(t)) ∈ D
Output: Inferred time and users

history = {}

foreach observation time at t do
∆d(t) = {(a : v) | ∃(a : v, c(t)) ∈ d(t) s.t (c(t)−c(t − 1)) ≥
1}
for i = 1 to n do do

if ui ⊆ ∆d(t) then
history = history ∪ {t : ui}

end
end

end
return history

improve the accuracy of the inference attack for such cases.
We define U, Di and attribute sets as follows:

Algorithm 3 Inference attack with multiple third party
services
Input: ACi = AU ∩ ADi

u = {(a : v) | a ∈ AU , v is a value of a} and u ⊆ U
d1, d2, ..., dn : n datasets of the third party services
di(t) = {(a : v, ci(t) | a ∈ ACi , v is a value of a, ci(t) is a
counter of (a : v) tuple at time t} and ∃(a : v, ci(t)) ∈ Di

Output: Inferred time the user has used the services

history = {}

foreach observation time at t do
∀ i : di(t) = {(a : v) | ∃(a : v, ci(t)) s.t (ci(t)−ci(t−1)) ≥
1}
if (∀ i : ∆di(t) ⊆ u) then

history = history ∪ {t : u}
end

end
return

AU = {a | a is an attribute of U}

ADi = {a | a is an attribute of Di}

U = {(a : v) | a ∈ AU , v is a value of a}

Di = {(a : v, c(t)i) | a ∈ ADi , v is a value of a,

ci is a counter of (a : v) tuple at time t}

If the information of a user is recorded in all dataset of
the third party services at time t, the inference system can
know that the user used all services at time t.


