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LFSR-Based Generation of Multicycle Tests

Irith Pomeranz

Abstract— This paper describes a procedure for computing a multicycle

test set whose scan-in states are compressed into seeds for an LFSR, and

whose primary input vectors are held constant during the application of

a multicycle test. The goal of computing multicycle tests is to provide

test compaction that reduces both the test application time and the test

data volume. To avoid sequential test generation, the procedure uses a

single-cycle test set to guide the computation of multicycle tests. The

procedure optimizes every multicycle test, and increases the number of

faults it detects, by adjusting its seed, primary input vector, and number

of functional clock cycles. Optimizing the seed instead of the scan-in

state avoids the computation of scan-in states for which seeds do not exist.

Experimental results for benchmark circuits are presented to demonstrate

the effectiveness of the procedure.

Index Terms—LFSR-based test generation, multicycle tests, test

compaction, test data compression.

I. INTRODUCTION

Between the scan-in and scan-out operations of a test, a single-

cycle test has a single functional clock cycle, while a multicycle

test has one or more functional clock cycles. Multicycle tests were

considered in [1]-[12]. Their effectiveness for test compaction was

demonstrated in [1], [2], [9], [11] and [12], and results from the

following observations. During a functional clock cycle of a test, the

combinational logic of the circuit receives an input pattern that can be

used for detecting faults. A larger number of functional clock cycles

allows more faults to be detected. As a result, a multicycle test may

detect more faults than a single-cycle test. With more detected faults

for every test, the number of tests is reduced. This reduces the number

of scan operations that a test set requires. With fewer scan operations,

the test data volume and test application time are reduced. The fact

that each test consists of more functional clock cycles has a negligible

effect on the test application time when the number of functional

clock cycles is bounded. The test data volume is independent of the

number of functional clock cycles if the primary input vector is kept

constant during a test. This is a common requirement to address tester

limitations that prevent the primary input vector from being changed

during a test.

For the discussion in this paper a multicycle test is denoted by

ti =< pi, vi, li >, where pi is the scan-in state, vi is the primary

input vector, and li is the number of functional clock cycles. After pi
is scanned-in, the primary input vector vi is applied for li functional

clock cycles. The test ends with a scan-out operation.

The generation of multicycle tests for test compaction requires

the number of functional clock cycles li in a test to be determined

in addition to its scan-in state pi and its primary input vector vi.
To simplify the test generation procedure, and avoid the need for

sequential test generation, it is possible to use a single-cycle test

set to guide the generation of a multicycle test set [12]. Thus, if

< qi, ui, 1 > is a single-cycle test, it is possible to define a multicycle

test < pi, vi, li > by using pi = qi and vi = ui. However, as

shown in [12], after this initial assignment, it is important to optimize

pi, vi and li together in order to obtain multicycle tests that detect

the largest possible numbers of faults, and thus achieve the highest

possible level of test compaction.
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The generation of multicycle tests for test compaction becomes

more complex when test data compression is used. In one of the

commonly used test data compression methods, a test is compressed

into a seed for a linear-feedback shift register (LFSR) [13]-[24].

The on-chip decompression logic uses the LFSR to apply the test

to the circuit. A seed is typically computed based on an incompletely-

specified test cube by solving a set of linear equations that relate the

bits of the seed with the specified values of the test cube [13]. With

this process, optimizing a multicycle test < pi, vi, li > to increase

the number of faults it detects requires a seed to be recomputed after

every step that modifies the test, and some modifications of the test

cannot be accepted because a seed does not exist for the modified

test.

Motivated by these observations, the goal of this paper is to

develop a procedure for computing seeds for LFSR-based generation

of multicycle tests that are effective for test compaction. To avoid

sequential test generation, the procedure uses a single-cycle test set

similar to [12], and optimizes the multicycle tests to increase the

numbers of faults they detect. In contrast to [12], the procedure

optimizes the compressed multicycle tests in order to avoid producing

tests for which seeds do not exist.

A compressed multicycle test is represented as ti =< si, vi, li >,

where si is a seed that produces the scan-in state pi of ti. For

simplicity, and since the number of primary inputs is typically

significantly smaller than the number of state variables, a seed is

computed for the scan-in state pi. The primary input vector vi is

stored separately. This is consistent with the approach described in

[21]. The number of functional clock cycles li does not need to be

stored for every test if tests with equal numbers of functional clock

cycles are stored and applied consecutively.

To achieve the goal of producing compressed multicycle tests that

are effective for test compaction, the procedure described in this paper

optimizes the seed si, the primary input vector vi, and the number of

functional clock cycles li together to increase the number of faults

that the test detects. By considering the seed si directly, the procedure

optimizes the scan-in state pi, and avoids modifications of pi for

which a seed does not exist. Moreover, the single-cycle test set that

the procedure uses as guidance does not need to be compressed. To

accommodate this case, the procedure initializes the seed si randomly,

and not based on the scan-in state qi of a single-cycle test. It is thus

possible to use a compact single-cycle test set that is not constrained

by the LFSR.

The possibility of optimizing a seed si was used in [23] to

modify seeds that produce fault detection tests into seeds that produce

diagnostic tests. The modification of a seed si is implemented in [23]

by complementing bits of si one by one, and recomputing the test ti
that the LFSR produces. A bit complementation is accepted when

ti satisfies certain objectives (in [23] these objectives are related to

the generation of diagnostic tests). In the procedure described in this

paper, bits of si and vi, as well as the value of li, are modified

together in order to produce an effective multicycle test.

The target faults in this paper are single stuck-at faults. The

procedure is developed assuming that an LFSR is given. The paper

also describes a modified binary search process for selecting an

LFSR out of a given set of available LFSRs.

The paper is organized as follows. Section II describes the com-

putation of a compressed multicycle test ti =< si, vi, li > based

on a single-cycle test wi =< qi, ui, 1 >. Section III describes the

computation of a compact multicycle test set that is made up of

compressed multicycle tests based on a single-cycle test set. The

modified binary search process for an LFSR is described in Section

IV. Section V presents experimental results.
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II. COMPUTING A COMPRESSED MULTICYCLE TEST

The procedure described in this section accepts a single-cycle test

wi =< qi, ui, 1 >, a set of target faults Fi, and an initial target

L for the number of functional clock cycles in a multicycle test. It

produces a compressed multicycle test ti =< si, vi, li > that detects

as many faults from Fi as possible.

To check whether wi is effective in guiding the generation of a

multicycle test, the procedure performs fault simulation of Fi under

wi. It stores the set of detected faults in Di. If Di = ∅, the procedure

does not attempt to compute a multicycle test based on wi. It marks

that wi is not effective to avoid considering it again in later iterations.

If Di 6= ∅, the procedure continues as follows.

Not all the specified values of wi =< qi, ui, 1 > are needed

for fault detection. To ensure that only important values guide the

generation of ti, the procedure first changes as many specified values

of qi as possible into unspecified values without losing the detection

of any fault from Fi. The remaining specified values are important

for the detection of target faults. They can thus be used for guiding

the generation of ti.

For a circuit with k state variables, let qi(j) be the value of state

variable j, where 0 ≤ j < k. For 0 ≤ j < k, if qi(j) 6= x, the

procedure assigns qi(j) = x, and simulates Di under < qi, ui, 1 >. If

all the faults in Di are detected, the procedure accepts the unspecified

value of qi(j). Otherwise, it restores its previous specified value.

To compute ti =< si, vi, li >, the procedure initializes si
randomly, and assigns vi = ui and li = L. Let pi be the scan-in state

that si produces. The procedure simulates Fi under < pi, vi, li >,

and stores the number of detected faults in a variable that is denoted

by dbest. In addition, it computes the Hamming distance between

pi and qi, and stores it in a variable that is denoted by hbest.

The Hamming distance is equal to the number of state variables j
where qi(j) 6= x and pi(j) 6= qi(j). As ti is modified, dbest stores

the largest number of detected faults, and hbest stores the smallest

Hamming distance obtained with the largest number of detected

faults.

The goal of modifying ti is to increase the number of detected

faults (or the value of dbest), and reduce the Hamming distance

between pi and qi (or the value of hbest). Increasing the number

of detected faults is given a higher priority. If the procedure cannot

increase the number of detected faults, reducing the Hamming

distance between pi and qi may eventually allow ti to detect faults

from Di.

The modification of ti is accomplished in three steps that are

applied iteratively. The first step attempts to complement bits of

si. The second step attempts to complement bits of vi. The third

step attempts to replace li with a different value from the set

{1, 2, ..., LMAX}, where LMAX is a constant upper bound on li.

During the first step, the procedure considers every bit of si. With

a B-bit LFSR, the procedure considers si(j) for 0 ≤ j < B.

When the procedure considers si(j), it complements its value, and

recomputes the scan-in state pi of ti. It simulates Fi under ti, and

stores the number of detected faults in a variable that is denoted by

di. In addition, it computes the Hamming distance between pi and

qi, and stores it in a variable that is denoted by hi. The procedure

accepts the complementation of si(j) if di > dbest, or di = dbest
and hi < hbest. Thus, to accept the complementation of si(j), the

procedure requires either an increase in the number of detected faults,

or a reduction in the Hamming distance with the same number of

detected faults. If this condition is satisfied, the procedure updates

dbest and hbest by assigning dbest = di and hbest = hi. Otherwise,

the procedure restores the previous value of si(j) by complementing

it again.

A similar process is applied to vi, except that complementing bits

of vi does not affect the Hamming distance between pi and qi. The

same applies to li. For li, the procedure considers different numbers

of functional clock cycles, which are given by lnew = LMAX ,

LMAX − 1, ..., 1, in this order. If lnew 6= li, the procedure assigns

li = lnew. It simulates Fi under ti, and stores the number of detected

faults in di. The procedure accepts the new value of li if di ≥ dbest.
In this case, it assigns dbest = di. Otherwise, it restores li to its

previous value.

This process prefers a lower value of li if it does not reduce the

number of detected faults.

The number of iterations of the three steps is a constant that is

denoted by NMOD . After NMOD iterations the procedure returns

the test ti, and the number of faults that it detects, dbest.
The procedure for computing ti is summarized next. For unifor-

mity, the Hamming distance between pi and qi is considered for si,
vi and li even though it cannot be affected by modifying vi or li.
The number of primary inputs is denoted by n.

Procedure 1: Computing a compressed multicycle test ti

1) Simulate Fi under < qi, ui, 1 > and find the set of detected

faults, Di. If Di = ∅, assign use(wi) = 0, and return dbest =
0.

2) Unspecify qi such that wi would continue to detect all the faults

in Di.

3) Specify si randomly. Assign vi = ui and li = L.

4) Compute pi. Simulate Fi under ti and assign the number

of detected faults to dbest. Compute the Hamming distance

between pi and qi, and assign it to hbest.

5) For nmod = 0, 1, ..., NMOD − 1:

a) For j = 0, 1, ..., B − 1:

i) Complement si(j). Call Procedure accept mod().
If the procedure returns FALSE, complement si(j)
again.

b) For j = 0, 1, ..., n− 1:

i) Complement vi(j). Call Procedure accept mod().
If the procedure returns FALSE, complement vi(j)
again.

c) For lnew = LMAX , LMAX − 1, ..., 1, if li 6= lnew:

i) Assign li = lnew. Call Procedure accept mod(). If

the procedure returns FALSE, restore the previous

value of li.

6) Return ti and dbest.

Procedure accept mod()

1) Compute pi. Simulate Fi under ti and assign the number of

detected faults to di.
2) Compute the Hamming distance between pi and qi, and assign

it to hi.

3) If di > dbest, or di = dbest and hi ≤ hbest, assign dbest = di
and hbest = hi, and return TRUE.

4) Return FALSE.

Procedure 1 performs NMOD iterations where it considers B bits

of si, n bits of vi, and LMAX − 1 options for li. In every case it

simulates one modified test, for a total of NMOD(B+n+LMAX−1)
tests.

III. COMPUTING A COMPRESSED MULTICYCLE TEST SET

This section describes the computation of a compressed multicycle

test set based on a single-cycle test set W1. The test set W1 is

not producible by an LFSR with a limited number of bits. With

a bound LMAX on the number of functional clock cycles in a test,

the multicycle test set is denoted by TLMAX
.
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TABLE I

EXAMPLE

L i spec li f.c. i spec li f.c.

8 0 51 8 45.65 19 23 3 96.28

1 39 8 70.67 21 9 6 96.87

2 35 6 78.28 23 22 1 96.96

3 21 8 81.49 26 11 1 97.13

4 22 6 85.21 27 13 5 97.21

5 20 1 88.08 29 13 1 97.30

6 8 3 89.52 32 26 4 97.46

7 28 7 90.87 35 11 7 97.63

8 4 1 92.05 37 20 6 97.72

10 15 1 92.48 39 20 1 97.89

11 21 7 92.98 41 13 2 97.97

12 15 5 93.66 46 20 1 98.06

13 5 1 94.00 47 21 1 98.22

14 6 1 94.42 49 20 1 98.39

18 27 3 95.69

7 5 18 5 98.82 32 19 1 99.41

7 20 1 98.90 39 20 1 99.49

19 21 1 99.07 41 13 1 99.58

23 22 1 99.32 46 13 1 99.66

6 39 20 1 99.75

5 29 13 1 99.83 32 19 1 99.92

The procedure initially assigns TLMAX
= ∅, and includes in a

set F all the target faults that are detected by W1. The procedure

constructs TLMAX
by performing LMAX iterations over the tests

of W1. The iterations differ in the initial target L for the number

of functional clock cycles in a test. The procedure considers L =
LMAX , LMAX − 1, ..., 1 in order to achieve the following goals.

By considering higher values of L earlier, the procedure gives a

precedence to the computation of multicycle tests with larger numbers

of clock cycles. Such tests allow more target faults to be detected,

thus contributing to test compaction. By considering all the values

of L down to 1, the procedure ensures that single-cycle tests will

be included in TLMAX
if this is necessary for detecting some of the

faults.

For every value of L, the procedure attempts to compute a test ti
based on every test wi =< qi, ui, 1 >∈ W1. If a test ti is computed,

and dbest 6= 0, the procedure adds ti to TLMAX
, and simulates F

under ti with fault dropping.

After considering all the values of L, the procedure performs

forward-looking reverse order fault simulation in order to remove

unnecessary tests from TLMAX
.

Several features of the procedure are illustrated by the following

example. The example uses a 24-bit primitive LFSR from [25] for

ITC-99 benchmark b07. The test set W1 consists of 52 tests, and

it achieves a 99.92% single stuck-at fault coverage (the remaining

faults are undetectable). The procedure is applied with LMAX = 8.

Table I shows the multicycle tests that the procedure constructs with

L = 8, 7, 6 and 5. The procedure terminates after considering L = 5
since all the target faults are detected.

In Table I, column L shows the initial number of clock cycles for

a multicycle test. Column i shows the index of the test wi ∈ W1

that the procedure uses. Column spec shows the number of specified

values in the scan-in state qi of wi. Column f.c. shows the single

stuck-at fault coverage after the procedure adds a test based on wi

to T8.

A multicycle test ti that the procedure derives with a given value

of L may have li 6= L. The initial value of li is L, but the procedure

may select a different value. This occurs in Table I for several tests.

For example, with L = 8, based on w2 ∈ W1 the procedure produces

a 6-cycle test. Based on w5 ∈ W1 the procedure produces a single-

cycle test.

The number of specified values in the scan-in state qi of wi ∈ W1

decreases as the fault coverage of the compressed test set increases. A

higher fault coverage implies that fewer faults remain to be detected.

Therefore, fewer faults are included in Fi, and in the set of faults Di

that wi is required to detect. With fewer faults in Di, qi requires fewer

specified values for detecting the faults in Di. For example, w5 ∈ W1

has 20 specified values in its scan-in state after it is unspecified with

L = 8. The number of specified values decreases to 18 with L = 7.

The procedure does not compute a multicycle test based on every

single-cycle test. For example, with L = 8, the procedure does not

generate a test based on w9, w15, w16, and so on. This results in test

compaction.

The procedure is summarized next.

Procedure 2: Computing a multicycle test set

1) Let F be the set of target faults that are detected by W1. Assign

use(wi) = 1 for every wi ∈ W1. Assign TLMAX
= ∅.

2) For L = LMAX , LMAX − 1, ..., 1, if use(wi) = 1:

a) For i = 0, 1, ... , |W1| − 1:

i) Call Procedure 1 with the test wi =< qi, ui, 1 >∈
W1, L and F . If Procedure 1 returns a test ti and

dbest > 0:

A) Perform fault simulation with fault dropping of F
under ti.

B) Add ti to TLMAX
.

Procedure 2 performs LMAX iterations where it calls Procedure 1

at most |W1| times. Each call to Procedure 1 requires simulation of

NMOD(B+n+LMAX−1) tests. Overall, this yields a computational

effort that is equivalent to simulation of O(LMAX |W1|NMOD(B+
n+LMAX −1)) tests. With constant values for NMOD and LMAX ,

the number of simulated tests is O(|W1|(B + n)).

IV. SELECTING AN LFSR

The LFSR with the smallest number of bits that achieves the fault

coverage of W1, or the highest possible fault coverage, is preferred.

This section describes a modified binary search process for such an

LFSR out of a given set of available LFSRs. The set is denoted

by A = {α0, α1, ..., αm−1}. For 0 ≤ i < m, the number of bits in

LFSR αi is denoted by Bi. The LFSRs in A are ordered such that

B0 ≤ B1 ≤ ... ≤ Bm−1.

In general, an LFSR with a larger number of bits has the potential

to yield a higher fault coverage. However, this is not guaranteed. The

modified binary search process takes into consideration that, with

Bi0 < Bi1, the LFSR αi0 can achieve a higher fault coverage than

αi1. Therefore, considering αi1 and finding that it does not achieve

the fault coverage of W1 should not immediately preclude LFSRs

with indices i0 < i1 from consideration. This is incorporated into

the modified binary search process as follows.

Initially, ilo = 0 and ihi = m− 1 are the bounds of the modified

binary search process. In an arbitrary step, Procedure 2 is applied

using αi where i = (ilo + ihi)/2. Based on the fault coverage, the

bounds ilo and ihi are updated as follows.

(1) If αi achieves the fault coverage of W1, ihi = i− 1 is assigned.

In this case, the binary search continues to search among the LFSRs

with the lower numbers of bits as in the conventional case.

(2) If αi does not achieve the fault coverage of W1, in a conventional

binary search process, ilo = i + 1 is assigned in order to continue

the search among the LFSRs with the higher numbers of bits. To

allow LFSRs with lower numbers of bits to be considered as well,

the modified binary search process assigns ilo = (ilo + i)/2. If this

does not increase ilo, then ilo = ilo + 1 is assigned.

Table II illustrates the modified binary search process for IWLS-

05 benchmark i2c. The test set W1 achieves 100% single stuck-at

fault coverage. The set of available LFSRs consists of 61 LFSRs

with numbers of bits between 4 and 64. Initially, ilo = 0 and
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TABLE II

MODIFIED BINARY SEARCH

ilo ihi i B f.c.

0 60 30 34 99.87

15 60 37 41 99.83

26 60 43 47 99.96

34 60 47 51 100.00

34 46 40 44 99.96

37 46 41 45 100.00

37 40 38 42 99.91

38 40 39 43 100.00

ihi = 60. With these values, Procedure 2 is applied using i = 30.

The corresponding LFSR has B30 = 34 bits. The fault coverage is

99.87%, lower than the fault coverage of W1. In a conventional binary

search process, this would result in ilo = 31. In the modified process,

ilo = (0 + 30)/2 = 15. With ilo = 15 and ihi = 60, Procedure 2 is

applied using i = 37. The fault coverage is again lower than the fault

coverage of W1. This results in ilo = (15+37)/2 = 26. The search

continues as shown in Table II. The search yields α39 as the best

LFSR. This value would not be obtained in a conventional search

after α43 yields a fault coverage that is lower than that of W1.

V. EXPERIMENTAL RESULTS

This section presents the results of Procedure 2 for single stuck-at

faults in benchmark circuits.

The test set W1 is a compact test set that was produced by the

procedure from [26] with the target of detecting each detectable single

stuck-at fault once.

Procedure 2 was applied using LMAX = 8. This value is high

enough to demonstrate the advantages of multicycle tests. A test is

modified during NMOD = 4 iteration. Smaller numbers of iterations

are typically sufficient.

The set of available LFSRs consists of primitive LFSRs from

[25]. All the B-bit LFSRs with 4 ≤ B ≤ 128, and several of the

LFSRs with 129 ≤ B ≤ 300, are available. For a circuit with k
state variables, B ≤ k/2.

For comparison, Procedure 2 is applied with LMAX = 1 and

the LFSR that is selected for LMAX = 8. With LMAX = 1,

Procedure 2 is allowed to perform eight iterations, as in the case

where LMAX = 8, by repeating Step 2 eight times with L = 1.

To demonstrate the advantages of the bit complementation process

used by Procedure 1 over a random search process, a random version

of Procedure 1 was implemented and used as part of Procedure 2.

The modified procedures are referred to as Procedure 1R and 2R,

respectively. Procedure 1R selects a new random seed si or primary

input vector vi every time Procedure 1 complements a bit of si or vi,
respectively. In this way, the procedures consider the same numbers of

seeds and primary input vectors, but they are random in Procedure 1R.

Procedure 2R is identical to Procedure 2 except that it calls Procedure

1R instead of Procedure 1. Procedure 2R was run with LMAX = 8
and the LFSR selected for Procedure 2 with LMAX = 8. The test

set obtained by Procedure 2R is referred to as R8.

The results are given in Table III as follows. The first row for every

circuit describes W1, for which scan-in states cannot be produced

by an LFSR with a limited number of bits. The second row

describes the multicycle test set T8 produced by Procedure 2 with

the LFSR selected by the modified binary search process. The third

row describes the single-cycle test set T1 produced by Procedure 2

with the same LFSR. The fourth row describes the multicycle test

set R8 produced by Procedure 2R using a random search process and

the same LFSR.

Column B shows the number of LFSR bits. For W1, B = k.

Column L shows the value of LMAX . Column tests shows the

TABLE III

EXPERIMENTAL RESULTS

func

circuit B L tests max ave cycles bits f.c. ntime

s1423 74 1 38 1 1.00 2924 2812 99.08 -

s1423 23 8 27 8 4.11 2183 621 99.08 1523.90

s1423 23 1 47 1 1.00 3599 1081 98.94 363.10

s1423 23 8 31 8 3.52 2477 713 98.61 667.83

s5378 179 1 111 1 1.00 20159 19869 99.13 -

s5378 47 8 154 8 1.59 27990 7238 99.13 774.14

s5378 47 1 168 1 1.00 30419 7896 99.13 275.01

s5378 47 8 181 8 1.60 32868 8507 98.94 1673.43

s9234 228 1 143 1 1.00 32975 32604 93.47 -

s9234 94 8 163 8 2.36 37776 15322 93.47 3595.50

s9234 94 1 181 1 1.00 41677 17014 93.47 1050.82

s9234 94 8 239 8 3.14 55470 22466 91.74 3789.69

s13207 669 1 238 1 1.00 160129 159222 98.46 -

s13207 68 8 212 8 2.43 143012 14416 98.46 1515.47

s13207 68 1 302 1 1.00 203009 20536 98.46 575.85

s13207 68 8 295 8 2.41 198734 20060 98.09 3345.53

s15850 597 1 118 1 1.00 71161 70446 96.68 -

s15850 79 8 240 8 2.13 144388 18960 96.68 2226.16

s15850 79 1 286 1 1.00 171625 22594 96.67 573.72

s15850 79 8 252 8 2.33 151628 19908 94.33 3780.59

s35932 1728 1 20 1 1.00 36308 34560 89.81 -

s35932 4 8 15 8 4.80 27720 60 89.81 326.24

s35932 4 1 33 1 1.00 58785 132 89.39 207.82

s35932 4 8 16 8 3.62 29434 64 89.81 309.29

b04 66 1 44 1 1.00 3014 2904 99.85 -

b04 15 8 39 6 1.69 2706 585 99.85 382.58

b04 15 1 40 1 1.00 2746 600 99.85 99.53

b04 15 8 37 8 1.70 2571 555 99.63 432.46

b07 51 1 52 1 1.00 2755 2652 99.92 -

b07 24 8 38 8 3.13 2108 912 99.92 385.56

b07 24 1 57 1 1.00 3015 1368 99.75 121.94

b07 24 8 33 8 3.79 1859 792 99.15 410.95

b14 247 1 332 1 1.00 82583 82004 94.87 -

b14 123 8 265 7 1.56 66115 32595 94.87 965.11

b14 123 1 317 1 1.00 78863 38991 94.87 367.33

b14 123 8 152 8 2.63 38191 18696 90.24 3417.93

des area 128 1 118 1 1.00 15350 15104 100.00 -

des area 4 8 68 8 2.62 9010 272 100.00 3362.74

des area 4 1 77 1 1.00 10061 308 100.00 731.21

des area 4 8 104 8 2.18 13667 416 100.00 3818.72

i2c 128 1 45 1 1.00 5933 5760 100.00 -

i2c 43 8 50 8 2.30 6643 2150 100.00 1040.32

i2c 43 1 69 1 1.00 9029 2967 99.53 340.01

i2c 43 8 59 8 2.88 7850 2537 99.27 1302.63

pci spoci ctrl 60 1 146 1 1.00 8966 8760 99.94 -

pci spoci ctrl 27 8 104 8 2.42 6552 2808 87.25 3333.54

pci spoci ctrl 27 1 113 1 1.00 6953 3051 83.46 1405.87

pci spoci ctrl 27 8 97 8 2.33 6106 2619 77.75 5515.83

sasc 117 1 22 1 1.00 2713 2574 100.00 -

sasc 8 8 25 8 3.72 3135 200 100.00 516.08

sasc 8 1 36 1 1.00 4365 288 99.88 133.58

sasc 8 8 23 8 3.57 2890 184 100.00 510.15

simple spi 131 1 36 1 1.00 4883 4716 100.00 -

simple spi 39 8 31 8 2.90 4282 1209 100.00 961.51

simple spi 39 1 44 1 1.00 5939 1716 99.90 303.20

simple spi 39 8 35 8 3.71 4846 1365 99.14 1121.72

spi 229 1 406 1 1.00 93609 92974 99.98 -

spi 83 8 260 8 1.80 60238 21580 99.98 1111.36

spi 83 1 373 1 1.00 86019 30959 99.97 423.95

spi 83 8 252 8 1.97 58433 20916 99.80 1233.31

systemcdes 190 1 79 1 1.00 15279 15010 100.00 -

systemcdes 4 8 23 8 7.00 4721 92 100.00 930.44

systemcdes 4 1 71 1 1.00 13751 284 99.00 915.54

systemcdes 4 8 26 8 6.12 5289 104 100.00 876.98

tv80 359 1 489 1 1.00 176399 175551 99.33 -

tv80 89 8 324 8 3.42 117782 28836 99.33 1158.32

tv80 89 1 469 1 1.00 169199 41741 99.29 331.65

tv80 89 8 401 8 3.59 145756 35689 98.82 1953.81

usb phy 98 1 32 1 1.00 3266 3136 100.00 -

usb phy 20 8 29 8 2.90 3024 580 100.00 590.00

usb phy 20 1 38 1 1.00 3860 760 100.00 166.00

usb phy 20 8 30 8 3.13 3132 600 100.00 692.00

wb dma 523 1 66 1 1.00 35107 34518 100.00 -

wb dma 126 8 111 8 1.54 58747 13986 100.00 13085.93

wb dma 126 1 130 1 1.00 68643 16380 99.99 4000.95

wb dma 126 8 143 8 1.63 75545 18018 99.63 8651.51

number of tests in the test set. Column func shows the maximum
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and average number of functional clock cycles in a test. Column

cycles shows the number of clock cycles required for applying the

test set, including scan and functional clock cycles. Column bits
shows the number of bits required for storing scan-in states or seeds.

Column f.c. shows the single stuck-at fault coverage. Column ntime
shows the run time normalized to the run time for single stuck-at fault

simulation of W1.

The following points are important when considering the results

shown in Table III. The main purpose of using an LFSR with a

limited number of bits is to achieve test data compression. From Table

III it can be observed that the number of bits required for storing the

scan-in states of T1 is lower than that of W1. The number of bits

required for storing the scan-in states of T8 is lower than for T1

and W1. Thus, the use of multicycle tests strengthens the ability to

achieve test data compression.

The requirement to produce a test set by an LFSR with a limited

number of bits may limit the fault coverage and increase the number

of tests. Therefore, the number of clock cycles required for applying

the test set may increase. Nevertheless, for most of the circuits

considered, T8 achieves the fault coverage of W1. Without using

multicycle tests, and for the same number of LFSR bits, the fault

coverage of T1 is sometimes lower than that of W1 and T8.

In addition, there are several cases where the number of clock

cycles required for applying T8 is lower than that of W1. The number

of clock cycles required for the application of T8 is lower than for T1

even for a higher fault coverage. This is consistent with the ability

of multicycle tests to provide test compaction.

In most of the cases considered, when a random search process

is used instead of the bit complementation process of Procedure 1,

the fault coverage is lower. There is only one case (sasc) where the

fault coverage is the same and the random search process produces

a lower number of bits.

Overall these results demonstrate that the advantages of multicycle

tests in achieving test compaction are valid when the tests are required

to be producible by an LFSR with a limited number of bits in order

to achieve test data compression.

VI. CONCLUDING REMARKS

This paper described a procedure for computing a multicycle

test set with the following properties. (1) The scan-in states are

compressed into seeds for an LFSR. (2) The primary input vectors

are held constant during the application of a multicycle test. The

procedure is guided by a single-cycle test set. This test set does not

have to be applicable using an LFSR with a limited number of

bits. The procedure adjusts an initially random seed, the primary

input vector, and the number of functional clock cycles of each

multicycle test to detect the largest possible number of faults. This

process is guided by a single-cycle test. Experimental results for

benchmark circuits demonstrated the effectiveness of multicycle tests

in achieving test compaction when the tests are required to be

producible by an LFSR in order to achieve test data compression.
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