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(a) (b) (c) 

Fig. 10. Active power delivery: (a) PCC voltage and inverter current, (b) two phases of grid currents, (c) grid neutral current (Ig,n) and inverter neutral current 

(Io,n). 

 
  

(a) (b) (c) 

Fig. 11. Active and reactive power delivery: (a) PCC voltage and inverter current, (b) two phases of grid currents, (c) grid neutral current (Ig,n) and inverter 

neutral current (Io,n). 

B.  Active and Reactive Power Delivery  

In Fig. 11, the controller is set to supply the balance 

reactive current/power component of the load besides the 

delivery of active power (𝑖𝑟𝑒𝑓 = 𝑖𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑖𝑟
𝑏). From the 

voltage and current waveforms shown in Fig. 11 (a), the 

inverter is supplying active and reactive power since the 

inverter current is no longer in phase with the voltage. The 

result of this compensation strategy is shown in Fig. 11 (b) in 

which the void and unbalance current components of the load 

is supplied by the grid. It can be seen from Fig. 11 (c) the grid 

is supplying the neutral current, related to single phase loads. 

C.  Active Power Delivery and Unbalance Compensation   

The load considered in the system imposes unbalance 

component to the grid’s current. Therefore, the CPT, 

proposed in the paper, is used to extract the unbalance 

current/power component of the load. In this study, the aim is 

to compensate the unbalance current component caused by 

the single- and intra-phase loads (𝑖𝑟𝑒𝑓 = 𝑖𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑖𝑢). 

Therefore, the inverter current is sinusoidal but unbalanced 

whereas the grid currents are balanced but non-sinusoidal and 

out of phase with the voltages as shown in Fig. 12 (a) and 

Fig. 12 (b) respectively. In this case, the inverter current is 

responsible for supplying unbalance current component of the 

single phase loads through its fourth-leg as it is illustrated in 

Fig. 12 (c). Note that the harmonic current component of the 

single- and three-phase loads is still supplied by the grid. 

D.  Active Power Delivery and Harmonics Compensation 

At this case study, the inverter is providing harmonics 

compensation by injecting the void currents (𝑖𝑟𝑒𝑓 = 𝑖𝑎𝑐𝑡𝑖𝑣𝑒 +

𝑖𝑣). From Fig. 13 (a) and Fig. 13 (b), the inverter current is 

nonlinear whereas the grid current is sinusoidal but 

unbalanced and not in phase with the voltages. It can be 

observed that the grid in this case is not supplying the single-

phase void current components through its neutral wire rather 

it is supplied by the inverter through its fourth-leg as 

illustrated in Fig. 13 (c). The neutral wire of the grid caries 

only the unbalance current component related to the single 

phase loads. 

E.  Active Power Delivery and Non-active Compensation 

In Fig. 14, the inverter is set to compensate non-active 

current component of the load current including all 

disturbances, i.e.  load reactive power, nonlinearities and 

unbalances (𝑖𝑟𝑒𝑓 = 𝑖𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑖𝑛𝑎). Fig 14 (a) shows that the 

inverter current contains non-active current component 

whereas Fig. 14 (b) shows the gird is absorbing the remaining 

active current which is not consumed by the load. Note that 

the active current, exported to the grid is proportional to the 

instantaneous PCC voltages. As shown in Fig. 14(c), the grid 

supplies zero current through its neutral and the inverter is 

supplying the return current of single phase loads through its 

fourth-leg.
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(a) (b) (c) 

Fig. 12. Active power delivery and unbalance compensation: (a) PCC voltage and inverter currents, (b) two phases of grid current, (c) grid neutral current (Ig,n) 

and inverter neutral current (Io,n). 

   
(a) (b) (c) 

Fig. 13. Active power delivery and void compensation: (a) PCC voltage and inverter currents, (b) two phases of grid current, (c) grid neutral current (Ig,n) and 

inverter neutral current (Io,n). 

   
(a) (b) (c) 

Fig. 14. Active power delivery and nonactive compensation: (a) PCC voltage and inverter currents, (b) two phases of grid current, (c) grid neutral current (Ig,n) 

and inverter neutral current (Io,n). 

F.  Multi-functional and Active Filter modes 

In this section, two different tests are performed to validate 

the overall performance of the machine side and the grid side 

controllers during different wind speed conditions. 

In Fig. 15, a test is done to validate the controller when it 

switches from active power delivery only to active and non-

active compensation at maximum wind power. From Fig. 15, 

at t=7s, the inverter started providing active power as well as 

non-active compensation. The DC-link voltage starts to 

oscillate but kept at its desired value. The grid current 

becomes sinusoidal and balanced. The inverter current, on the 

other hand, becomes unbalanced and nonlinear. The neutral 

current is produced by the fourth leg of the inverter resulting 

in zero neutral current at the grid side. 

The harmonics spectrum of the grid current and THD with 

no compensation is shown Fig. 16. Since there are single- and 

three-phase loads as well as intra-phase loads in the system, 

the THD is different for each phase. The current of phase-a 

and phase-b contains THD of 5.84% and 5.35 respectively.   

 In Fig. 17 the grid current spectrum is demonstrated after 

the inverter is set to compensate the load non-active current 

components. The THD of phases-a and phase-c were reduced 

from 5.84% and 5.35% to about 2.46% and 2.68% 

respectively. Phase-b initially had much less harmonics 

because it doesn’t have nonlinear single-phase load as the 

other phases. The amplitude of the grid current is reduced as 

the inverter is also supplying the unbalance components.   
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Fig. 15. Active power delivery and non-active compensation at t=7s. 

   

(a) (b) (c) 

Fig. 16. Spectrum and THD of grid current without power quality improvement: (a) phase-a, (b) phase-b (c) phase-c. 

   
(a) (b) (c) 

Fig. 17. Spectrum and THD of grid current with non-active compensation: (a) phase-a, (b) phase-b (c) phase-c.  
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Fig. 18. Active power delivery and non-active compensation under different wind speeds. 

In Fig. 18, a comprehensive test is performed under 

different wind speeds. At no wind available or zero rotor 

speed, the grid side inverter is operating as active filter. 

Therefore, the controller is intended to keep the DC voltage at 

constant value (1000V) and provide non-active compensation 

to improve the power quality of the grid current. During this 

condition, the grid supplies the active power for the load.  

When the wind speed increases above the cut-in speed and the 

turbine started producing power, the grid side inverter inject 

the active and compensate non-active components. If the 

produced power is more than the load power, the remaining is 

injected to the grid. During all the time, the DC-link voltage is 

kept constant at 1000V. 

VI.  CONCLUSION 

This paper addressed a comprehensive control method for a 

back-to-back wind turbine system connected to an industrial 

plant. The control uses the four-leg inverter at the grid side to 

supply available active power from the wind turbine system 

along with full compensation of load current disturbances. The 

main contribution is based on CPT to impress the set-point 

reference and impose disturbances mitigation, which adds 

significant flexibility to the control structure. 

The control structure was tested with a comprehensive real-

time benchmarking case-study with hardware in the loop. The 

control algorithms were compiled inside our TI DSP and 

validated using the real-time system “Opal-RT”. The 

algorithms were debugged and are ready for experimental 

validation in a retrofitting of a wind turbine (future work). The 

results showed good performance of the algorithm and the 

THD was improved for all different operation conditions. The 

results support the system presented here which can avoid 

installation of active filter hardware by the utility or by the 

industrial consumer.   
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