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lowing a proxy to translate a ciphertext encrypted under a
user’s identity into another ciphertext under another user’s
identity. In this approach, a Master Secret Key (MSK) is
used to generate user secret keys from their identities. These
secret keys are equivalent to private keys in IBE. No public
keys are needed, since identities are directly used in the
cryptographic operations. With this approach, a user uα can
encrypt a piece of data m using his identity idα to obtain
a ciphertext cidα encrypted under idα. A re-encryption key
rkα→β can be generated to re-encrypt from idα to idβ . Then,
a proxy can use rkα→β to obtain another ciphertext cidβ
under the identity of another user uβ . This can then use his
own secret key skβ to obtain the plain piece of data m. As
for IBE approaches, the MSK should be kept private and
users can obtain their secret key from the PKG.

This IBPRE scheme is the one selected for the authoriza-
tion solution proposed in this paper. It has been selected
because it combines both PRE and IBE. It fulfills the three
aforementioned requirements of proxy re-encryption and
supports IBE, what allows to use the identities of the autho-
rization elements for cryptographic operations, avoiding the
need to generate and manage a key pair for each element.

As mentioned before, the proposed solution is not tied
to any PRE scheme or implementation. For the purpose of
providing a comprehensive and feasible solution, the rest
of this paper is based on the IBPRE approach and notation.
However, the proposal could be applied to use other Proxy
Re-Encryption schemes that fulfill the three aforementioned
required features. This includes current or future schemes
that could improve performance or security. It could be even
a pure PRE scheme without combination with IBE, although
that could imply the generation and management of extra
key pairs. Moreover, some functionality provided by this
solution might be lost, like compatibility with PKI, which is
supported by IBPRE and avoids the usage of a PKG.

The following set of functions is provided by IBPRE. It
constitutes the cryptographic primitives for the proposal:

setup (p, k)→ (p,msk) (1)
keygen (p,msk, idα)→ skα (2)
encrypt (p, idα,m)→ cα (3)
rkgen (p, skα, idα, idβ)→ rkα→β (4)
reencrypt (p, rkα→β , cα)→ cβ (5)
decrypt (p, skα, cα)→ m (6)

Details about the cryptographic operations that are per-
formed by these functions can be found in [12]. A brief
description of each function follows. (1) Initializes the cryp-
tographic scheme. It takes as input a security parameter k
to initialize the cryptographic scheme (e.g. parameters to
generate an elliptic curve) and outputs both the Master
Secret Key msk and a set of public parameters p that is
used as input for the rest of functions. (2) generates Secret
Keys. It takes as input the msk and an identity idα; and
outputs the Secret Key skα corresponding to that identity.
(3) encrypts data. It takes as input an identity idα and a plain
text m; and outputs the encryption of m under the specified
identity cα. (4) generates Re-encryption Keys. It takes as
input the source and target identities idα and idβ as well
as the Secret Key of the source identity skα; and outputs the

Re-encryption Key rkα→β that enables to re-encrypt from
idα to idβ . (5) re-encrypts data. It takes as input a ciphertext
cα under identity idα and a Re-encryption Key rkα→β ; and
outputs the re-encrypted ciphertext cβ under identity idβ .
(6) decrypts data. It takes as input a ciphertext cα and its
corresponding Secret Key skα; and outputs the plain text m
resulting of decrypting cα.

4 AUTHORIZATION MODEL WITH ENRICHED ROLE-
BASED EXPRESSIVENESS

The management of access control and security could be-
come a difficult and error prone task in distributed systems
like Cloud computing. Authorization models providing
high expressiveness can help to control and manage security
and to deal with this complexity. They can aid adminis-
trators with this task by enabling the specification of high-
level access control rules that are automatically interpreted
by system for this to behave as defined by the administra-
tor. Role-Based Access Control (RBAC) is an authorization
scheme supported by most of the current authorization
solutions. In this approach, the authorization model makes
use of the Role concept to assign privileges to subjects. A set
of subjects can be assigned to one or more roles which, in
turn, can be associated to a set of privileges. This provides
more expressiveness to the authorization model, making it
easier to manage privilege assignments through roles.

To illustrate the concepts described along this paper,
let us consider an example where a company uploads to
the Cloud a couple of documents called DocumentX and
DocumentY which could be accessed only by the managers
of the company. Also consider that Bob and Alice are man-
agers of this company. Without role support in the autho-
rization model, the company should define and manage
individual privilege assignments for every user and every
document. That is, four privileges should be defined in
this example: Bob → DocumentX , Bob → DocumentY ,
Alice → DocumentX and Alice → DocumentY . On the
other hand, making use of roles, a Managers role could be
defined to group all users that are managers of the company
and two single privileges need to be defined: Managers→
DocumentX and Managers → DocumentY . Let us de-
note them p1 and p2, respectively. This provides more ex-
pressiveness to the model, making it more natural for the
administrator to manage privileges, as well as avoiding the
need to manage individual privileges.

This section presents the authorization model with en-
riched Role-based Access Control expressiveness used for
SecRBAC. This is a secondary contribution of the paper and
serves to provide the formalization basis for the data-centric
solution that will be specified in following sections.

An authorization model determines the privileges that
are granted to subjects for accessing specific system objects.

Definition 1 (Privileges). Let O be the set of objects that are
managed and A the set of actions that may be performed over
those objects. A privilege specifies a given action that can be
performed over a specific object. It is defined as an ordered pair
(a, o) , a ∈ A, o ∈ O and the set of privileges in the authorization
model determines the binary relation

P := (A,O,P) ,P ⊆ A×O = {(a, o) , a ∈ A, o ∈ O} (7)
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Definition 2 (Grants). Let S be the set of subjects and T the set
of roles. A grant assigns a privilege to a given subject or role. It is
defined as an ordered pair (u, p) , u ∈ S∪T, p ∈ P and the set of
grants in the authorization model determines the binary relation

G := (S ∪ T,P,G) ,
G ⊆ S ∪ T× P = {(u, p) , u ∈ S ∪ T, p ∈ P}

(8)

Definition 3 (Subject-role assignment). A subject-role as-
signment is defined as an ordered pair (s, r) , s ∈ S, r ∈ T.
This assignment makes s to inherit all privileges granted to r by
(8). The set of subject-role assignments in the authorization model
determines the binary relation

D := (S,T,D) ,D ⊆ S× T = {(s, r) , s ∈ S, r ∈ T} (9)

This authorization model can be extended to hierarchical
RBAC (hRBAC). Hierarchical RBAC enables the definition
of role hierarchies. These hierarchies establish privilege
inheritance between roles, making a child role to inherit
all the privileges defined for parent roles in the hierarchy.
The major motivation for adding role hierarchy to RBAC is
to simplify role management. A child role r1 ∈ T can be
defined as member of another parent role r2 ∈ T. It makes
the system to consider instances belonging to any parent
role, to be also belonging to its child roles in the hierarchy.

Following the example, consider that Bob is a sales
manager whereas Alice is a finance manager. Also consider
that another document DocumentZ is only intended for sales
managers. Both users should still have access to DocumentX
and DocumentY, but only Bob should have access to Docu-
mentZ. Making use of role hierarchies, two roles SalesMan-
ager and FinanceManager could be defined as children of the
Managers role. Then, Bob would be assigned to SalesManager
and Alice to FinanceManager –instead of being both assigned
to Managers. Another privilege p3 could be now defined
as SalesManager → DocumentZ. This way, Bob would
have access to DocumentZ by p3. Moreover, by privilege
propagation through the role hierarchy, both users would
still have access to DocumentX and DocumentY by p1 and p2.

It should be noticed that privilege inheritance in this
hierarchy is transitive. That is, if r1 ∈ T is a child of r2 ∈ T
and r2 is a child of r3 ∈ T, then r1 will inherit all the
privileges from both r2 and r3.

Definition 4 (Parent-role assignment). A parent-role assign-
ment is defined as an ordered pair (r1, r2) , r1, r2 ∈ T, where r1
is the child role and r2 the parent role. This assignment makes r1
to inherit all the privileges granted to r2 by (8). The set of parent-
role assignments in the authorization model determines the binary
relation

E := (T,T,E) ,E ⊆ T× T = {(r1, r2) , r1, r2 ∈ T} (10)

To endow the model with more expressiveness, a hi-
erarchical approach can be also applied to the protected
objects. In this case, a child object will be affected by all the
privileges that affect its parent objects in the hierarchy. This
hierarchy is also transitive and it enables the specification of
a single grant affecting a whole a set of objects - those which
are children of the object specified in the grant.

In the example, two different privileges p1 and p2 were
defined for DocumentX and DocumentY. Instead, making

use of object hierarchy, a new object ManagementDocu-
ments could be defined as a category of documents to
which DocumentX and DocumentY would belong. Thus, a
single privilege p4 could be defined instead of p1 and
p2: Managers → ManagementDocuments. By privilege
propagation through the object hierarchy, every manager
would now have access to both DocumentX and DocumentY.

Definition 5 (Parent-object assignment). A parent-object
assignment is defined as an ordered pair (o1, o2) , o1, o2 ∈ O,
where o1 is the child object and o2 the parent object. This assign-
ment makes o1 to be affected by all the privileges that affect o2
by (7). The set of parent-object assignments in the authorization
model determines the binary relation

F := (O,O,F) ,F ⊆ O×O = {(o1, o2) , o1, o2 ∈ O} (11)

Since both role and object hierarchies are transitive, the
transitive closures of the binary relations E and F are
considered on their respective sets T and O.

Definition 6 (Transitive closure). The transitive closure of a
binary relation R on a set X is the minimal transitive relation R′

on X that contains R. That is, R′ := (X,X,R′) with

R′ ⊆ X× X = {(x, y) ∈ X× X | ∃ (a0, a1, . . . , an) ,
a0 = x, an = y ∧ (ai R ai+1)∀ 0 ≤ i < n}

(12)

The set of binary relations defined above are determined
by the authorization rules defined by the data owner. For
instance, a rule stating “subject s1 belongs to role r1” results
in the element d1 = (s1, r1) ∈ D in the binary relation D of
the authorization model. This information is specified by the
data owner and it is what determines whether a resource can
be accessed or not by a given user. When a user requests to
access a resource, the CSP queries the model to check if the
requesting user (subject) is granted to perform the requested
operation (action) over the protected resource (object).

Theorem 1 (Privilege granted). A subject s1 ∈ S is granted
to perform action a1 ∈ A over the object o1 ∈ O iff ∃ g1 =
(u1, p1) ∈ G such that

u1∈ S⇒ u1 = s1 (13)
u1∈ T⇒ ∃r1∈ T | (s1 D r1)∧ ((r1=u1)∨ (r1 E′ u1)) (14)
p1 = (a2, o2) | (a1 = a2) ∧ ((o1 = o2) ∨ (o1 F

′ o2)) (15)

where E′ and F ′ are the transitive closures of E and F on T and
O, respectively.

Proof. Proof of this Theorem can be found in Appendix A.

5 SELF-PROTECTED AUTHORIZATION MODEL FOR
DATA-CENTRIC SECURITY

The authorization model presented in Section 4 determines
the privileges that are granted to subjects. It should be eval-
uated by the Cloud Service Provider upon an access request
in order to decide whether such a request is permitted or
not. However, if data is not cryptographically protected then
the CSP could potentially access the data for its own benefit.
Moreover, the data owner should trust the CSP to legiti-
mately evaluate the model and enforce the authorization
decision. If the authorization rules are not cryptographically
protected then they can be overridden by the CSP, making
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it able to access the data or to release it to any third party.
A self-protected authorization model is needed to achieve a
data-centric mechanism that technically guarantees the CSP
cannot access or disclose data to unauthorized parties.

This section describes a protected authorization model
for a data-centric solution. A self-protection mechanism is
provided to assure data can only be accessed by authorized
subjects according to the data owner rules. It is achieved by
the application of the cryptographic techniques described in
Section 3. Then, a representation and evaluation mechanism
based on Semantic Web technologies is also proposed.

5.1 Protecting the authorization model
Following a data-centric security approach, data should
be encrypted to avoid undesired access. Then, the access
control mechanism should control who will be able to
decrypt the data and get access to its content. In terms of
authorization, this means that the set of objects O should be
encrypted before being uploaded to the Cloud. Moreover,
the set of actions A is formed by the access action, meaning
being able to decrypt the data and get access. That is,
A = {access}. The general authorization model defined in
Section 4 is able to support other actions over protected data
(e.g. modify or delete). However, actually protecting the
data against those actions in a data-centric approach imply
advanced and more complex cryptographic techniques to
provide such protection at data level. This is currently out
of the scope of this paper, although it is being considered as
part of on-going research work.

The reduction of the set A to a single element allows a
simplification of the protected authorization model regard-
ing privileges and grants. A new binary relation Ga can be
defined to represent the grants with access privileges.

Definition 7 (Access grant). An access grant assigns a privi-
lege to perform the access action to a given subject or role and it
is defined as

Ga := (S ∪ T,O,Ga) ,
Ga ⊆ S ∪ T×O = {(u, o) , u ∈ S ∪ T, o ∈ O |
∃ g ∈ G, p ∈ P, g = (u, p) , p = (access, o)}

(16)

It should be noticed that when A = {access} both
relations are equivalent, i.e. G ≡ Ga. Since A = {access},
then there is only one possible privilege for each ob-
ject. That is, P = {(access, o) , a ∈ A, o ∈ O} and G =
{(u, (access, o)) , u ∈ S ∪ T, o ∈ O} ≡ Ga.

This reduction also simplifies the conditions of Theo-
rem 1 when considering only the access action. The following
Corollary can be deduced from Theorem 1.

Corollary 1 (Access granted). A subject s1 ∈ S is granted to
access the object o1 ∈ O iff ∃ g1 = (u1, o2) ∈ Ga such that

u1∈ S⇒ u1 = s1 (17)
u1∈ T⇒ ∃r1∈ T | (s1 D r1)∧ ((r1=u1)∨ (r1 E′ u1)) (18)
(o1 = o2) ∨ (o1 F

′ o2) (19)

As exposed in Section 3, a cryptographic scheme is
used to protect the authorization model. This is achieved
by encrypting the objects using the encrypt() function (3)
and assigning a set of keys to the different elements of

the authorization model. In practical terms, objects are not
directly encrypted using the encrypt() function. Since data
objects may be large documents or files, a digital envelope
approach should be rather used as explained in Section 6.

In order to apply the cryptographic operations, identities
of the authorization elements should be used. Let us denote
as idx the identity of any authorization element x, being
x ∈ O ∪ S ∪ T. The actual assignment of identities to the
elements of the authorization model is domain specific. For
IBPRE functions, an identity can be any string identifying
the element as far as it is unique within the domain.

According to the previous example, the different identi-
ties considered for the authorization model would be: Bob,
Managers, ManagementDocuments, DocumentX, etc. Note that
these strings could be as simple as they appear or they could
be extended using a specific format that makes them unique
within the domain. For instance, the identity of Bob could
be just “bob”, an account “bob@example.com”, a distin-
guished name “CN=Bob,OU=Sales,O=Example,C=US” or
even a URI “http://example.com/users/bob”.

Definition 8 (Encrypted object). Let O be the set of objects
managed by the system as specified in Def. 1. The set O′ of
encrypted objects is defined as

O′ = {co | co = encrypt (p, ido, o)∀o ∈ O} (20)

where encrypt() is the function (3).

Once data objects are encrypted, a mechanism is pro-
vided for authorized users to be able to access the data based
on the authorization model. Intuitively, when a user s1 is
able to access object o1 according to Corollary 1, a path can
be found through the binary relations of the authorization
model that links s1 with o1. In general terms, the path will
be something like the following:

s1
D−−−−−→

rkr1→s1

r1
E−−−−−→

rkri→r1

. . .
E−−−−−→

rkr2→ri

r2

r2
Ga−−−−−→

rko2→r2

o2
F←−−−−−

rkoi→o2

. . .
F←−−−−−

rko1→oi

o1
(21)

Labels above arrows represent the binary relations of
the authorization model. This path can be shorter as some
relations may not be present, depending on the conditions
of Corollary 1. For instance, if u1 ∈ S, then by (17) u1 = s1
and g1 = (s1, o2), which directly links s1 to o2 without
intermediate roles. So, no roles would appear in the path.

In the example, the path in (22) can be found between
Bob and DocumentX, giving him access to the document.

Bob
D−−−−−−−−−−−−−→

rkSalesManager→Bob

SalesManager

SalesManager
E−−−−−−−−−−−−−−−−→

rkManager→SalesManager

Manager

Manager
Ga−−−−−−−−−−−−−−→

rkMgmtDocs→Manager

MgmtDocs

MgmtDocs
F←−−−−−−−−−−−−−−−−

rkDocumentX→MgmtDocs

DocumentX

(22)

The link between the object o1 and the user s1 enables
to construct a chain to re-encrypt protected objects under
the identity of users. The above path determines the re-
encryption chain needed to re-encrypt from co1 to cs1 , which
can be directly decrypted by using the Secret Key of user s1.
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Labels below arrows in the path represent the re-encryption
keys that should be applied. Note that re-encryption keys
assigned to each binary relation should be generated in
reverse order to the one determined by the relation, except
for the F relation of parent object assignments.

The re-encryption chain for the previous example is
shown in (23). This chain will transform DocumentX (orig-
inally encrypted under its own identity) to be encrypted
under Bob’s identity, which Bob can directly decrypt by
making use of his Secret Key skBob.

rkDocumentX→MgmtDocs, rkMgmtDocs→Manager,

rkManager→SalesManager, rkSalesManager→Bob
(23)

The access to protected resources is based on the set of
re-encryptions given by the path in (21). Re-encryption keys
are needed for these re-encryptions to be computed. These
keys rkα→β are generated by (4), which requires skα. Thus,
in the protected model, a Secret Key skα is assigned to every
element α of the authorization model based on its identity
idα in order to be able to compute re-encryption keys from
α to any other element β. These keys are not used to decrypt
data, but they are employed to generate re-encryption keys.
Note that only users need to access the data. Hence only
user Secret Keys are really used for decryption with (6).
Also note that when actually implementing the model, not
all keys need to be computed and stored. They can be gen-
erated on demand when required to generate a particular
re-encryption key, as explained in Section 6.

Definition 9 (protected subject, role and object). Let H be the
set of secret keys and S, T and O the sets of subjects, roles and
objects as specified by Def. 1 and Def. 2. The following sets are
defined

S′′ = {(s, sks) , sks ∈ H,∀s ∈ S |
sks = keygen (p,msk, ids)}

(24)

T′′ = {(r, skr) , skr ∈ H,∀r ∈ T |
skr = keygen (p,msk, idr)}

(25)

O′′ = {(o, sko) , sko ∈ H,∀o ∈ O |
sko = keygen (p,msk, ido)}

(26)

where keygen() is the function (2).

The binary relations of the authorization model should
also be protected, since they represent the authorization
rules defined by the data owner. They are also the basis
for the computations done by the CSP in order to check
whether a user can access a piece of data. The assignment
of re-encryption keys that only the data owner can generate
guarantees that the CSP is not able to apply authorization
rules that have not been legitimately defined.

Definition 10 (Protected subject-role assignment). Let K be
the set of re-encryption keys and D be the set of subject-role
assignments as specified in Def. 3. The set D′′ of protected subject-
role assignments is defined as

D′′ = {(d, rkr→s) , rkr→s ∈ K,∀d ∈ D |
rkr→s = rkgen (p, skr, idr, ids) ,

d = (s, r) , (r, skr) ∈ T′′}
(27)

where rkgen() is the function (4).

Definition 11 (Protected parent-role assignment). Let E be
the set of parent-role assignments as specified in Def. 4. The set
E′′ of protected parent-role assignments is defined as

E′′ = {(e, rkr2→r1) , rkr2→r1 ∈ K,∀e ∈ E |
rkr2→r1 = rkgen (p, skr2 , idr2 , idr1) ,

e = (r1, r2) , (r2, skr2) ∈ T′′}
(28)

Definition 12 (Protected parent-object assignment). Let F be
the set of parent-object assignments as specified in Def. 5. The set
F′′ of protected parent-object assignments is defined as

F′′ = {(f, rko1→o2) , rko1→o2 ∈ K,∀f ∈ F |
rko1→o2 = rkgen (p, sko1 , ido1 , ido2) ,

f = (o1, o2) , (o1, sko1) ∈ O′′}
(29)

Definition 13 (Protected grant). Let Ga be the set of access
grants as specified in Def. 7. The set G′′a of protected grants is
defined as

G′′a = {(g, rko→u) , rko→u ∈ K,∀g ∈ Ga |
rko→u = rkgen (p, sko, ido, idu) ,

g = (u, o) , (o, sko) ∈ O′′}
(30)

Given the above sets with the corresponding secret and
re-encryption keys, an encrypted object can only be accessed
(i.e decrypted) if there exists an adequate re-encryption
chain. That is, an user s1, which only has access to its
own secret key sks1 , can only decrypt an object o1 initially
encrypted under ido1 by finding a re-encryption chain that
transforms the object encrypted under ido1 to the same
object encrypted under ids1 . This is only possible if the
access to object o1 is granted to the subject s1 according
to the protected authorization model.

Theorem 2 (Protected access). A subject s1 ∈ S is granted
to access the object o1 ∈ O iff ∃ (r0, . . . , rn) , ri (x) =
reencrypt (p, rki, x) , rki ∈ K, (yi, rki) ∈ D′′ ∪E′′ ∪ F′′ ∪G′′a
∀ 0 ≤ i ≤ n such that

m = decrypt (p, sks1 , (r0 ◦ · · · ◦ rn) (co1)) (31)

where decrypt() is the function (6) and ◦ denotes function
composition.

Proof. Proof of this Theorem can be found in Appendix B.

5.2 Representation and evaluation
The authorization model described above can be repre-
sented and implemented in several ways. Here it is pro-
posed a representation based on an ontology defined in
the Ontology Web Language 2 (OWL 2) [18]. OWL is a
W3C standard which enables the specification of ontologies,
defining class hierarchies and their relationships, associ-
ated properties and cardinality restrictions. This language
is based on formal methods and it constitutes a remarkable
added value since it provides powerful semantics to define
the authorization model and enables the usage of reasoners
for automatic computation. Reasoners are able to process
complex queries about the authorization model, inferring
additional information and performing a formal validation
and verification. The inference capability of reasoners can
be used to automatically compute the set of conditions of
Corollary 1, which are needed to decide whether a given
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subject is granted to access an object. This highly simplifies
the deployment to be done in a CSP to support data pro-
tected with this solution, since there are several standard
OWL reasoners available. An additional advantage of using
ontologies to represent the authorization model is that it al-
lows the application of advanced techniques such as conflict
detection and resolution methods as described in [19].

Different kinds of OWL 2 ontologies can be distin-
guished, depending on the provided expressiveness and its
computational complexity. In this context, the term expres-
siveness refers to the set of structural elements or construc-
tors that can be employed in the axioms for the ontology
description. Three profiles [20] are defined for OWL 2: OWL
2 EL, OWL 2 QL and OWL 2 RL. OWL 2 EL is designed
for ontologies with very large number of properties and
classes, mainly providing existential quantification. OWL 2
QL is useful for ontologies with a large number of instances,
where query answering is the most important reasoning
task. In turn, OWL 2 RL is aimed at providing scalable
reasoning, without sacrificing too much expressive power.
The OWL 2 EL profile has been selected to represent the
authorization model. It supports the required expressive-
ness (e.g. transitive object properties) and there are high
performance reasoning algorithms for this profile.

Ontology((reduced)(

Subject/Role(

Role( Subject(<transi(ve>,
subjectRole(

Object(grant(

<transi(ve>,
parentSR(

<transi(ve>,
parentObject(

<transi(ve>,
parentRole(

Fig. 1. Ontology representing the authorization model

Fig. 1 shows a direct representation in OWL of the pro-
tected authorization model described in section Section 5.1.
The sets representing different entities of the authorization
model are represented as classes of the ontology. Namely,
the set O is represented by the class Object, A by Action, S
by Subject, T by Role and the class Subject/Role represents the
union of sets S∪T. The binary relations of the protected au-
thorization model are directly mapped to object properties
in the ontology, whose domains and ranges are the domains
and codomains of the binary relations, respectively. Thus,
the binary relation Ga is represented by the property grant,
D by subjectRole, E by parentRole and F by parentObject.
OWL provides the axiom transitive object property, which
enables making a property to be transitive. A transitive
property interlinks two elements A and C whenever it
interlinks A with B and B with C for some element B.
This feature has been used to define the transitive closures
of the sets E and F , i.e. E′ and F ′, respectively. The
axiom has been used to define parentRole and parentObject as
transitive properties. The inference capability of reasoners
will automatically compute the transitive closures for the
corresponding binary relations.

OWL 2 also provides axioms that enable to define inher-
itance of object properties similar to inheritance of classes.
A parent object property can be defined that encompasses

both subjectRole and parentRole object properties in order
to simplify the query that will be done to the ontology.
This property is called parentSR (abbrv. parentSubjectRole)
meaning that either when a subject A is assigned to a role B
or when a role B is parent of another role C, this role B can
be considered a parent of either subject A or role C.

The ontology can be queried to check whether a given
subject is granted to access a given resource, according to the
conditions of Corollary 1. Querying the ontology includes
instance recognition and inheritance recognition. The for-
mer consists in testing if an element is an instance of a class
expression and the latter in testing if a class is a subclass of
another class or if a property is a sub-property of another.
This enables the formulation of generic queries referring
to abstract classes and properties, being the reasoner able
to recognize instances belonging to concrete subclasses or
sub-properties. Queries are usually defined using SPARQL
[21], the query language fostered under the Semantic Web
technologies. Listing 1 shows the query in SPARQL to obtain
the grant specified in Corollary 1 by checking the conditions
expressed in (17), (18) and (19).

1SELECT ?authorizedRole ?authorizedObject
2WHERE {
3{
4<subject> <GRANTED> <object>
5} UNION {
6<subject> <GRANTED> ?authorizedObject .
7<object> <PARENT_OBJECT> ?authorizedObject
8} UNION {
9?authorizedRole <GRANTED> <object> .
10<subject> <PARENT_SUBJECT> ?authorizedRole
11} UNION {
12?authorizedRole <GRANTED> ?authorizedObject .
13<subject> <PARENT_SUBJECT> ?authorizedRole .
14<object> <PARENT_OBJECT> ?authorizedObject
15}
16}

Listing 1. SPARQL authorization query

The set of conditions in Corollary 1 presents four dif-
ferent combinations, which are reflected in the four UNION
statements of the WHERE clause of the query. If u1 ∈ S,
then by (17) u1 = s1 and the access is granted directly
to the subject. Then, by (19) either (o1 = o2) or (o1 F

′ o2).
The first case is reflected in line 4 where the grant directly
links with s1 and o1. The second case is reflected in lines 6
and 7, where the grant directly links with s1 and indirectly
links with o1 through o2, which is represented by the
variable ?authorizedObject. Otherwise, u1 ∈ T and by (18)
∃ r1 ∈ T | (s1 D r1) ∧ ((r1 = u1) ∨ (r1 E

′ u1)). This means
that the grant indirectly links with s1 through a role r1,
which is represented by the variable ?authorizedRole. This is
reflected both in lines 9 and 10 as well as in lines 12 and
13. Note that this condition of (18) can be also specified
as ((s1 D r1) ∧ (r1 = u1)) ∨ ((s1 D r1) ∧ (r1 E

′ u1)). Both
cases are covered by the parentSubject property, which is a
super property for subjectRole and parentRole. Then, by (19)
either (o1 = o2) or (o1 F

′ o2). The first case is reflected in
line 9 where the grant is directly linked with o1. The second
case is reflected in lines 12 and 14 which indirectly links the
grant with o1 through o2 represented by ?authorizedObject.

The output of this query is a set of data structures
containing the possible solutions (statements in terms of
the ontology) that fulfill the conditions specified in the
WHERE clause. If no solution is found, then the access
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is denied since the conditions of Corollary 1 are not met.
In this case, data cannot be decrypted since conditions
of Theorem 2 are not met and there is no re-encryption
chain (r0, . . . , rn) that re-encrypts the protected object o1
from ido1 to ids1 . Otherwise, the possible results should
be processed to obtain the adequate re-encryption chain. It
should be noted that more than one solution is possible. In
this case, the solution resulting in the shorter re-encryption
chain would be preferable to reduce the number of re-
encryptions (cryptographic operations) that should be done.

Commonly speaking, for the reasoner to find a solution,
it should find a path in the ontology between the object
o1 and the subject s1. This path represents the set of re-
encryptions that should be done to transform an object
encrypted under ido1 to that object encrypted under ids1 .
The path is the one in (21), where binary relations in labels
directly map with object properties of the ontology. The re-
encryption keys are the ones assigned to each element in
the sets of the protected authorization model. For instance,
the binary relation D directly maps to the object property
subjectRole, which has re-encryption keys assigned by the
set of protected subject-role assignments (27) in Def. 10.

The concrete path for each solution can be obtained by
processing the output of the reasoner. The two variables au-
thorizedRole and authorizedObject determined by the SELECT
clause of the query represent the two intermediate elements
o2 and r2 that are granted when g1 is not directly linked to
s1 or o1. If any of these variables is not assigned to a value
in the query result, this means that g1 is directly assigned
to s1, the o1 or both. In turn, the result structure for each
solution contains the set of derivations performed by the
reasoner to deduce that solution. This information is used
to construct the path and, consequently, the re-encryption
chain. Since the ontology is a direct representation of the
sets and relations of the protected authorization model, the
derivations done by the reasoner are also directly mapped to
the original sets and relations. That is, the inference process
done by the reasoner has automatically computed the re-
encryption chain (r0, . . . , rn) specified in Theorem 2.

6 DATA-CENTRIC SOLUTION FOR DATA PROTEC-
TION IN THE CLOUD

In the protected authorization model specified in Section 5.1,
it should be observed that data is not encrypted with the
data owner identity, but with the object’s own identity
(e.g. ido1 ). This follows a data-centric approach for data
protection, in which data is encrypted with its own key
under the cryptographic scheme. If a pure PRE scheme is
used, the object would be also encrypted using its own
key pair. On another hand, a user-centric approach is used
for the authorization rules, where a unified access control
policy is defined by the data owner for its data. This allows
to share common definitions and to greatly simplify access
control management, getting the most from role hierarchy
and resource hierarchy capabilities.

An architecture is also proposed for the deployment
within a CSPs. This architecture takes into consideration the
different elements that should be deployed in order to give
an overview of how access to protected data is done in this
approach. Fig. 2 depicts the proposed architecture.

Architecture)

Policy)Decision)Point)

Cloud)Service)Provider)
Proxy)Re7encryptor)

CO1)

Data)owner) User)S1)

Cloud)service)

AuthzService)

Evaluator)

CS1)

CS1)
rkα!β$

Authz)
rules)

CO3)CO2)CO1) …)

DB)

Fig. 2. Architecture for deployment in a CSP

When moving data to the cloud, a self-protected package
is generated by the data owner. This package contains:
the encrypted data objects, the authorization rules and the
corresponding re-encryption keys.

Data objects are encrypted before uploading them to the
Cloud in order to prevent the CSP to access them. This
is done by data owners by using the encrypt() function
(3). According to Def. 8, data should be encrypted using
the identity ido1 of the object being uploaded o1. A digital
envelope approach can be applied to protect data objects
instead of direct encryption. This would enhance crypto-
graphic operations like re-encryptions for large data objects.
This approach consists in using a symmetric encryption
algorithm (e.g. AES) to protect the data object itself. The
encryption of data is done with a random symmetric key
generated for the purpose of a single encryption. Then,
this key is encrypted with the encrypt() function. With this
procedure, potentially big objects (e.g. large documents) are
encrypted using symmetric cryptography, whose algorithms
are more efficient. In turn, more costly operations are only
applied to the keys used for the symmetric encryption,
which are usually small pieces of data of some bytes length.

Authorization rules are defined by the data owner and
directly mapped into the authorization model. This is done
by including the corresponding elements in the binary re-
lations. For instance, a rule that grants a subject s1 access
to an object o1 would add an element g1 = (s1, o1) to
the binary relation Ga. Depending on the representation of
the authorization model, the corresponding rule should be
generated. Following the example, in case of an ontology, a
granted object property linking s1 to o1 should be included.

Re-encryption keys are generated by the rkgen() func-
tion (4) for every authorization rule. They can only be
generated by the data owner using the Master Secret Key
and the identities of the involved authorization elements.
Note that, although the rkgen() function initially takes the
Secret Key of one element, this key can be really com-
puted on demand using the keygen() function, which only
needs the MSK and the identity. That is, by (2) and (4)
rkgen (p, keygen (p,msk, idα) , idα, idβ) → rkα→β . This is
the main advantage of using IBE instead of a pure PRE
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scheme. The usage of IBE enables the generation of re-
encryption keys with just the MSK and the identities of the
authorization elements, avoiding the need to store dedicated
public and private key pairs for each authorization element.
The re-encryption keys can be considered as cryptographic
tokens provided by data owners in order to enable to
perform operations over the authorization model. That is,
a CSP will not be able to effectively apply any rule that has
not been legitimately defined by the data owner. If a CSP
tries to do so, it would result in a re-encryption chain that
would miss some re-encryption keys of the path, being that
re-encryption chain useless to access the data.

Applying this data-centric approach results in an self-
contained protected object, which can be released to the
Cloud and only authorized users could access the data
object. This can be useful for Inter-cloud scenarios, where
data can travel through different CSPs.

Before generating the first package, the data owner
should initialize the cryptographic suite by using the
setup() function (1). As result, the msk is obtained and
should be kept private. In turn, the parameters p returned
by the setup() function should be made available for other
users to execute cryptographic operations. This could be
simply done by publishing them on the CSP. However, a bet-
ter approach would be to include this information together
with the encrypted data. Standard cryptographic formats
usually have fields defined to this purpose. For instance,
the Cryptographic Message Syntax (CMS) [22] allows to
include an initialization vector which contains information
to be used to initialize the cryptographic suite.

Regarding the CSP, there are two main modules to be
deployed: a Policy Decision Point (PDP) which manages the
authorization model and a Proxy Re-encryptor that performs
the cryptographic operations. Cloud services offered by the
CSP interact with these two modules in order to securely
manage the data. They make use of a database to store the
protected packages uploaded by data owners. Thus, it con-
tains the information of these packages, i.e. encrypted data
objects, authorization rules and re-encryption keys. It can
also contain the parameters p to initialize the cryptographic
functions. The information can be kept in data packages as
provided by the data owner or it could be stored on any
other format that facilitates data processing to the CSP.

An authorization service (AuthzService) acts as entry
point to the PDP for Cloud services allowing to query it for
authorization decisions. This module takes decisions upon
a request from a user s1 to access to a piece of data o1 man-
aged by the service. These decisions usually return an access
granted or denied statement. For granted accesses, the re-
sponse also contains the re-encryption chain that should be
applied, together with the needed re-encryption keys. This
information allows to re-encrypt from co1 as provided by the
data owner to cs1 , which can be decrypted by the requesting
user. The service passes this information together with co1 to
the Proxy Re-encryptor for this to perform the re-encryption
operations. It results in cs1 , which is sent to the requesting
user. Making use of its own secret key sks1 the user can
decrypt the data with the decrypt() function (6). Note that
during this process, the CSP is not able to access the data
since it only applies a set of reencrypt() functions which do
not disclose any information about the data being processed.

The PDP considers two different sources of information:
authorization rules and re-encryption keys. This informa-
tion is provided in the protected packages uploaded by
the data owner. As mentioned before, the former contains
a representation of the protected authorization model as
described in section Section 5.1. This can be the ontology
explained in Section 5.2 or any other valid representation
of the model. The latter contains the set K of re-encryption
keys. The AuthzService makes use of an evaluator module in
charge of making the computations over the authorization
model. This module depends on the representation of the
model that is being used. In case of an OWL ontology, it
corresponds to a reasoner engine able to perform queries
over the model. The results of this module are processed by
the AuthzService to form an authorization decision. In case of
a positive decision, it also obtains the corresponding autho-
rization chain and the re-encryption keys for such a chain.
This information conforms the output of the AuthzService for
a request that is passed to the Proxy Re-encryptor module.

6.1 Key management and PKI compatibility
As exposed in section Section 3, IBPRE does not use public
and private key pairs in cryptographic operations. Instead, a
Master Secret Key (MSK) is used in combination with iden-
tities. This MSK is generated during the setup phase and it
should be kept private. On another hand, users accessing
the data need their own Secret Key (SK) to compute the
decrypt() function. Secret keys are generated based on the
user identity and the MSK. There are several approaches for
the distribution of these keys to users. In a straightforward
approach, SKs can be generated internally by the data owner
to keep the MSK protected. However, this will lead to the
need of distributing SKs securely to each user.

To this end, IBE schemes -including IBPRE- define a Pri-
vate Key Generator (PKG) for the generation and distribu-
tion of SKs. This entity should be trusted by the data owner
because it holds the MSK to generate the SKs. It can be
deployed as a service by the data owner in its own premises.
This would allow to keep the MSK under control, although
it would result in a critical service that should be protected.
Another choice would be a third trusted entity that provides
the PKG service. In this case, it is of paramount importance
to guarantee that this entity does not collude with the CSP.

As an alternative, an hybrid proxy re-encryption ap-
proach can be applied. This concept was introduced in [23]
and it consists in creating a bridge between IBE and Public
Key based Encryption (PKE). The IBPRE scheme used in
this proposal supports this feature. Thus, it can be used
to manage user keys by using well known and standard
technologies like a Public Key Infrastructure (PKI). This
feature implies the inclusion of two new functions:

rkgen pke (p, skα, idα, pubβ)→ rkα→β (32)
decrypt pke (p, privα, cα)→ m (33)

The functions are similar to the original ones (4) and
(6), but including some modifications. Details about the
modifications that need to be done to these functions can
be found in [12]. These functions take public and private
keys pubβ and privα to apply PKE instead of identity idβ
and Secret Key skα used for IBE.
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The application of these functions makes the re-en-
cryption scheme to lose the Multi-use feature, which is
required as described in section Section 3. That is, once
a Re-encryption Key generated by rkgen pke() is used to
re-encrypt, no further re-encryptions can be done to that
encrypted object. However, for the purposes of authoriza-
tion in this paper, this kind of re-encryption only needs
to be done to re-encrypt the protected object under the
requesting user public key. And this is done in the last re-
encryption, which is the one that results in the data being
encrypted under the user public key. Thus, re-encryption
keys generated with the original rkgen() function should
still be applied for re-encryptions along the authorization
path, except the one affecting the user, which is the last re-
encryption.

In practical terms, using the hybrid approach only im-
plies that re-encryption keys affecting subjects si ∈ S should
be generated with the rkgen pke() function. That is, when
the data owner defines a rule to grant a privilege or assigns
a role to a given subject, the corresponding re-encryption
key should be generated with (32). Otherwise, re-encryption
keys should be generated with the original rkgen() function
for the rest of the authorization elements.

With this approach, the data owner uses the public key
of the user when defining rules in the authorization model.
Upon a request, the data object is re-encrypted under the
requesting user public key. This user can then decrypt the
data by using the corresponding private key. Hence, key
management results in managing public and private key
pairs of PKE, which can be done by means of commonly
used and standard PKI solutions.

It is worth mentioning that the two approaches can be
combined. Some users can use PKE while others can still use
IBE. The only thing that needs to be done by the data owner
is to use the proper function (rkgen pke() or rkgen()) when
generating the corresponding re-encryption keys.

6.2 Security considerations
SecRBAC provides a self-protected mechanism to upload
data to the Cloud assuring that no unauthorized party is
able to access the data, including the CSP. In this case, the
CSP is considered a curious adversary that would be willing
to a) try to disclose the information to use it on its own
benefit and b) try to neglect the authorization rules in order
to release the information to an unauthorized third party.
However, it is assumed that the CSP would still behave hon-
estly according to the agreed service by releasing the data to
the requesting users if they are authorized. That is, the CSP
could intentionally provide corrupted ciphertexts, making
users unable to access the data. However, this would result
in a bad service perceived by the users, making them to
avoid using that CSP. It should be noticed that SecRBAC
does not hamper the ability to provide data to the CSP if
the data owner wants to do so. In this context, the CSP is
considered as any other user. It could access to some pieces
of data (e.g. to provide some service) only if the data owner
has defined the corresponding rules in the authorization
model. The solution allows the release of information, but
enabling the data owner to keep control over its data.

In order to keep the security of the authorization system,
some considerations should be taken into account during

deployment. The following conditions should hold to se-
curely protect data in the Cloud with SecRBAC:

• The CSP should not be able to access the MSK.
• The CSP should not be able to access Secret Keys of

authorization elements.
• If a PKG is used, it should be guaranteed that it does

not collude with the CSP.

If the CSP gains access to the MSK, it could derive Secret
Keys to gain access to the data. It could also generate new
re-encryption keys to apply authorization rules not defined
by the data owner. This would lead to the CSP being able to
release data to unauthorized third parties. In turn, if the CSP
gains access to the Secret Keys of authorization elements, it
could use these keys to generate new re-encryption keys. As
stated before, this would enable the CSP to release data to
unauthorized parties. Moreover, it could also try to find out
a re-encryption chain that results in an encrypted object un-
der an identity whose Secret Key is known for the CSP. This
would enable the CSP to apply this re-encryption and use
the Secret key to access the data. These two considerations
imply that the operations setup(), keygen() and rkgen()
should be performed by the data owner. And their output,
i.e. keys, should be kept secured by the data owner.

In case of using a PKG, the collusion of this entity with
the CSP may also result in the CSP accessing the data.
The CSP is able to search the authorization model for a re-
encryption chain that results in an encrypted object under
the identity of a user whose secret key is known for the
PKG. If the PKG provides this key to the CSP, it would be
able to perform the re-encryption and access the data.

On another front, the authorization administration im-
plies managing different parameters for the functions (1) to
(6). Some of these should be kept private, while others are
public and can be shared without compromising security.
The following parameters are used: the Master Secret Key
msk, the set of parameters p, identities idα, secret keys skα
and re-encryption keys rkα→β . Among these, the parame-
ters p and the identities idα are public information, while
the msk should be kept private by the data owner or the
PKG in case it is used. In turn, secret keys of authorization
elements (e.g. roles, objects) should be also kept private by
the data owner since they are used to generate re-encryption
keys. Secret keys of users (e.g. sks1 or skbob) should be
distributed and kept private by the corresponding users for
they to be able to decrypt data. Finally, re-encryption keys
rkα→β are used to protect the rules in the authorization
model. They are generated by the data owner and only those
which correspond to a legitimate authorization rule should
be released to the CSP. They are the key to re-encrypt data
when applying the corresponding authorization rule.

Finally, it would be worth to consider the usage of
pseudonyms as identities for privacy purposes. As de-
scribed in Section 5.1, identities can be any string identi-
fying the element as far as it is unique within the domain.
Although they are public and their knowledge do not com-
promise the security of the cryptographic operations, but
the CSP still can infer some knowledge such as the roles or
users managed within the data owner organization. Using
pseudonyms instead of real identifiers would avoid the CSP
to know the actual identities of such elements.
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7 IMPLEMENTATION AND PERFORMANCE

A prototypical implementation has been developed to
demonstrate the feasibility of the proposal. It has been
integrated in Google Cloud services to provide security
to documents in Google Drive. Since the core of Google
Services cannot be modified, integration has been done
by developing a Web application running on Google App
Engine. This application is registered as a Google Drive
application that integrates in Google Drive user interface.
The Web application contains the modules depicted in Fig. 2.

The authorization model has been represented as de-
scribed in Section 5.2 using Semantic Web technologies.
So, the Evaluator in this implementation consists on an
ontology reasoner. The Apache Jena framework has been
used to manage the ontology and to perform reasoning. The
AuthzService also makes use of this library to process the
output of the reasoner and retrieve the authorization chain.

An implementation of the IBPRE scheme has been de-
veloped using elliptic curve cryptography. The Java Pairing-
Based Cryptography Library (JPBC) and the Bouncy Castle
Crypto APIs have been used for the cryptographic opera-
tions. Documents uploaded by the data owner to Google
Drive are encrypted by using digital envelopes. They are
encrypted using AES-256 with random keys, which are then
encrypted with the encrypt() function. The format of the re-
sulting document has been developed to be compliant with
the standard Cryptographic Message Syntax (CMS) [22].

The implementation supports both PKG and PKI for
key management, corresponding to the two approaches
described in Section 6.1. It also allows the data owner to
directly generate and store user keys in case he wants to
distribute them by other means. When generating a re-
encryption key related to a privilege or role assignment,
the application asks the data owner to choose between
an IBE or PKE key for that user. In case of IBE, the key
will be generated automatically based on the user identity,
otherwise it will ask for the public key of the user.

An analysis has been carried out based on this imple-
mentation to test the feasibility of the proposal in terms of
performance. Tests have been done with an Intel i5 CPU at
2.7 GHz and 6 GB of RAM. A first set of tests consisted on
measuring execution times for the cryptographic functions
exposed in Section 3. These have been done by varying
different parameters in order to observe how these affect
the execution times. Concretely, the following variations
have been done: (1) number of re-encryptions, (2) length of
identities and (3) length of encrypted data. Then, another
set of tests have been done to measure the time needed
to evaluate the authorization model by using the ontology-
based approach described in Section 5.2.

In order to obtain statistics significant results, operations
have been performed in sets of 100 executions, whose av-
erage is used as result value. Each execution performs the
following steps. First, the setup() function (1) is executed
to initialize the cryptographic scheme. Then a piece of data
m is encrypted under a randomly generated identity id1
with the encrypt() function (3) to obtain a ciphertext c1.
The corresponding Secret Key sk1 is generated with the
keygen() function (2). Then, another random identity id2 is
generated and a re-encryption key rk1→2 is generated with

the rkgen() function (4). This is used to re-encrypt the c1
with the reencrypt() function (5). These three last steps are
repeated several times, resulting in a ciphertext cn under
identity idn after n re-encryptions. Finally, the decrypt()
function (6) is used to decrypt cn and obtain the plain data
m. The length of the plain data m, the length of identities
idi and the number of re-encryptions may vary depending
on the test. Several tests have been done by changing one
of these parameters to test the functions under different
circumstances. When a parameter do not change in a test,
default values are 512 bytes for data length, 32 bytes for
identity lengths and 100 for the number of re-encryptions.

In a PRE scheme, some operations could be affected by
the number of re-encryptions, while others may be inde-
pendent. A first test has been done by varying the number
of re-encryptions from 1 to 100 by incrementing in 10 re-
encryptions for each execution set. Fig. 3 shows the results
for this test. The encrypt() time is not shown because it is
the same as the keygen() time and their lines are overlapped
in the graphic. Times for setup() and decrypt() are shown in
a separate graphic because they present higher values and
showing them with the rest of functions would distort the Y
axis scale. As can be observed, setup(), keygen(), encrypt(),
rkgen() and reencrypt() remain constant. This is because
these operations do not process the re-encrypted ciphertext.
The first four functions do not have cα as parameter, so they
are agnostic to the number of re-encryptions done to the
ciphertext. In turn, reencrypt() takes this parameter, but op-
erations within this function only process the last encrypted
data, independently of the number of re-encryptions previ-
ously done to cα. On another hand, decrypt() increases with
the number of re-encryptions. This is because re-encryptions
are applied one over another in the ciphertext and decrypt()
has to undo these re-encryptions.

It is worth mentioning that the number of re-encryptions
depends on the expressiveness used by the data owner
when defining the authorization rules. Re-encryptions for
an access request can be observed in (21). At least one
re-encryption should be done. This is the case when an
access grant in the binary relation Ga is directly granting
the requesting user access to the requested object. If roles
are used, then at least two re-encryptions should be done.
The one for the access grant and another one for the subject-
role assignment in D. Then, if hierarchical expressiveness is
used, several re-encryptions could be needed for the parent-
role and parent-object assignments in E and F , respectively.
Thus, the number of re-encryptions would depend on the
hierarchical levels that are defined between the role of
the requesting user and the granted role plus the levels
between the requested and the granted object. It should
be noticed that this does not mean the number of roles
or objects managed by the model, but only the levels in
their hierarchies. As can be observed in (21), the number
of re-encryptions depends on the number of role and object
levels between the subject s1 and the object o1. The test has
been done up to 100 re-encryptions in order to stress the
system, considering 100 levels in role and object hierarchies
from s1 to o1. However, in practical terms a number of 10
levels (20 at most) would be enough for a realistic scenario.
For this number of re-encryptions, decrypt() remains under
acceptable execution times as shown in Fig. 3.
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Fig. 3. Times changing the number of re-encryptions

In turn, in an IBE scheme, the length of the identities
used for the cryptographic operations may also affect the
execution times. Another test has been done by varying the
length of the identities from 8 to 512 bytes by incrementing
in 64 bytes for each execution set. Fig. 4 shows the results
for this test. Results do not show any variation for the
cryptographic functions. Initially, it should affect functions
dealing with identities, i.e. those taking idα or idβ as param-
eter. These functions are keygen(), encrypt() and rkgen().
However, processing of these strings within the functions is
so small that it is negligible for the execution time.

Fig. 4. Times changing the length of identities

Finally, it is also interesting to see how times could be
affected by the length of the plain data being encrypted. An-
other test have been carried out by varying this parameter.
As described in Section 6, the usage of digital envelope is
encouraged as usual for asymmetric cryptography schemes.
In this approach, data is encrypted using a symmetric algo-
rithm such as AES with a random key that is then encrypted
using the asymmetric scheme. Hence, four lengths have
been considered for this test: 128, 192, 256 and 512 bits.
The first three correspond to the common key lengths used
for AES encryption. The last one has been also added to
test stronger AES encryption with 512 bytes keys as some
proposals are currently arising [24]. Fig. 5 shows the results
for this test. Again, results show a constant execution time
for all functions. Theoretically, encrypt(), reencrypt() and
decrypt() could be affected by the length of the data since
they take the plain data m or its encrypted counterpart cα
as parameter. However, the mathematical operations within
the cryptographic functions of IBPRE deal with a numeric
representation that maps to numbers of the same length for
all the considered lengths and performance is not affected.

To sum up, the average execution times obtained during
the tests are: 178 ms for setup(), 29 ms for keygen(), 29 ms
for encrypt(), 48 ms for rkgen(), 6 ms for reencrypt() and
247 ms for decrypt() with 10 re-encryptions.

Another set of tests has been also performed to measure
the time needed by the AuthzService to take authoriza-
tion decisions. The authorization model has been repre-
sented based on Semantic Web technologies as described

Fig. 5. Times changing the length of encrypted data

in Section 5.2. Decision times are related to the number
of authorization elements defined within the model, i.e.
number of roles, users, grants, objects, etc. These elements
are represented in what is called a Knowledge Base (KB),
which is used by the reasoner implementing the Evaluator
to evaluate the authorization query. The elements contained
in the KB are called individuals and the set of individuals for
a specific execution is referred to as population. In order to
study the scalability of the proposal, 6 executions have been
done using incremental populations. This allows getting
results with an increasing order of authorization elements.
In order to quickly increment the number of individuals,
this increment follows an exponential distribution. TABLE 1
shows the number of individuals for each population.

Population 1 2 3 4 5 6
Individuals 500 900 1,400 2,300 3,700 6,100

TABLE 1
Number of individuals by population

Different sets of 100 authorization requests have been
executed against each population, whose average is used as
result value in order to obtain statistics significant results.
Fig. 6 shows the times obtained during the tests for each
population. It shows accumulated times for the three main
operations done by the AuthzService. It first evaluates the
authorization model by calling the Evaluator, which executes
the SPARQL query in Listing 1. In case of a positive an-
swer, the output is processed to compute the authorization
chain. Then, the corresponding re-encryption keys for that
chain are retrieved. In order to obtain complete times, only
executions with a granted decision are taken into account.
Access denied decisions would result in shorter times since
the authorization chain does not need to be computed.

Fig. 6. Authorization decision times

As can be observed, the query times are incremented as
the population grows, while times for building the autho-
rization chain and retrieving re-encryption keys remain con-
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stant. This is because the query need to analyze the ontology
in order to check the conditions. The more individuals in
the ontology, the more data should be analyzed by the
reasoner during the query evaluation. However, computing
the authorization chain from a given answer is independent
of the ontology. So is the retrieval of re-encryption keys.
Thus, times remain constant for these two, independently
of the number of individuals. Finally, it should be noted
that times for authorization decisions remain below 13 ms
for populations of more than 6000 authorization elements,
which is a reasonable decision time.

8 CONCLUSION

A data-centric authorization solution has been proposed for
the secure protection of data in the Cloud. SecRBAC allows
managing authorization following a rule-based approach
and provides enriched role-based expressiveness including
role and object hierarchies. Access control computations are
delegated to the CSP, being this not only unable to access
the data, but also unable to release it to unauthorized par-
ties. Advanced cryptographic techniques have been applied
to protect the authorization model. A re-encryption key
complement each authorization rule as cryptographic token
to protect data against CSP misbehavior. The solution is
independent of any PRE scheme or implementation as far
as three specific features are supported. A concrete IBPRE
scheme has been used in this paper in order to provide a
comprehensive and feasible solution.

A proposal based on Semantic Web technologies has
been exposed for the representation and evaluation of the
authorization model. It makes use of the semantic features
of ontologies and the computational capabilities of reason-
ers to specify and evaluate the model. This also enables the
application of advanced techniques such as conflict detec-
tion and resolution methods. Guidelines for deployment in
a Cloud Service Provider have been also given, including an
hybrid approach compatible with Public Key Cryptography
that enables the usage of standard PKI for key management
and distribution. A prototypical implementation of the pro-
posal has been also developed and exposed in this paper,
together with some experimental results.

Future lines of research include the analysis of novel
cryptographic techniques that could enable the secure mod-
ification and deletion of data in the Cloud. This would allow
to extend the privileges of the authorization model with
more actions like modify and delete. Another interesting point
is the obfuscation of the authorization model for privacy rea-
sons. Although the usage of pseudonyms is proposed, but
more advanced obfuscation techniques can be researched to
achieve a higher level of privacy.
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