

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2458860, IEEE Transactions on Knowledge and Data Engineering

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2458860, IEEE Transactions on Knowledge and Data Engineering

WU ET AL.: EFFICIENT ALGORITHMS FOR MINING TOP-K HIGH UTILITY ITEMSETS 7

Item B C D E F G

A 9 28 24 24 10 15

B 17 14 18 0 6

C 0 0 0 0

D 0 0 0

E 0 0

F 0

Fig. 3. Pre-evaluation matrix (PEM)

3.2 The TKU Algorithm

In this subsection, we propose four strategies to effec-
tively raise min_utilBorder during different stages of the
mining process. The four strategies are incorporated in
TKUBase to form the advanced TKU algorithm.

3.2.1 Pre-evaluation Step

Though TKUBase provides a way to mine top-k HUIs,
min_utilBorder is set to 0 before the construction of the UP-
Tree. This results in the construction of a full UP-Tree in
memory, which degrades the performance of the mining
task. If min_utilBorder could be raised before the construc-
tion of the UP-Tree and prune more unpromising items
[25] in transactions, the number of nodes maintained in
memory could be reduced and the mining algorithm
could achieve better performance. Based on this idea, we
propose a strategy named PE (Pre-evaluation Step) to raise
min_utilBorder during the first scan of the database.

Strategy 2 (PE: Pre-Evaluation). The strategy PE uses a
structure named Pre-Evaluation Matrix (PEM) to store
lower bounds of the utilities of certain 2-itemsets. Each entry
in PEM is denoted as PEM[x][y] and corresponds to the
lower bound of EU({x, y}), where x, y  I*. Initially, each
value in PEM is set to 0. When a transaction Tr = {I1, I2,…,
IM} (Ij  I*, 1  i  M) is retrieved during the first database
scan, the utility of {I1}  {Ii} (1 < i  M) in Tr is added to the
value of the corresponding entry of PEM[I1][Ii] in PEM. Af-
ter scanning all the transactions, if the k-th highest value in
PEM is higher than min_utilBorder, min_utilBorder can be
raised to the k-th highest value in PEM. The space complexi-
ty of the strategy is O(|I*|2/2), where |I*| is the number of
distinct items in the database.

Example 5. Consider the database of Table 1. When T1 =
{(A,1), (C,1), (D,1)} is retrieved, the corresponding entries
PEM[A][C], PEM[A][D] are accumulated with EU({AC},
T1) = 6 and EU({AD}, T1) = 7. The remaining transactions
in the database are processed by the same procedure. Af-
ter that, if min_utilBorder is lower than the k-th highest value
in PEM, min_utilBorder is set to the k-th highest value in
PEM. Fig. 3 shows the value of each entry in PEM after
scanning the database. If k = 4, the 4-th highest value in
PEM is PEM[B][E] = 18. If min_utilBorder is less than this
value, min_utilBorder is raised to 18.

Notice that in TKUBase, the strategy DGU proposed in
[25] cannot be applied, because min_utilBorder is set to 0
before the construction of the UP-Tree. However, if we
apply the strategy PE to raise min_utilBorder during the first
database scan, DGU can be further applied to prune those
items whose TWUs are less than min_utilBorder, which re-
duces the size of the UP-Tree and the number of candi-
dates produced in phase I.

TABLE 6.
MIU VALUES OF DESCENDENTS OF NODE N{C}

Descendent N{E} N{A} N{B} N{D} N{G} N{F}

SC 4 3 3 3 2 1

MIU 16 18 15 9 3 6

3.2.2 Raising the Threshold by Node Utilities

We also propose a strategy called NU (raising the thre-
shold by Node Utilities), which is applied during the con-
struction of the UP-Tree. The strategy NU is developed
based on the following lemmas.

Lemma 8. Let PATH = N1, N2, …, NM, R be a path from a
node N1 to the root R in UP-Tree and IiI* be the item name
of Ni, 1  i  M. PATH = N1, N2, …, NM, R represents a
unique itemset X = {I1, I2, …, IM} in the database. Besides,
the node utility of N1 is a lower bound on the utility of X.

Rationale. The UP-Tree is constructed by applying the strate-
gy DGN [25]. According to the rationale described in [25],
the utility of the itemset X = {I1, I2, …, IM} is guaranteed to
be higher than the node utility of N1. Therefore, N1.nu 
EU({I1, I2, …, IM}).

Lemma 9. If there are M nodes in the UP-Tree, there are at
least M distinct itemsets whose utilities are higher than 0.

Rationale. By Lemma 8, each path from a node in the UP-Tree
to the root forms a unique path, which represents a unique
itemset whose utility is higher than zero in the database.
Therefore, M distinct nodes in the UP-Tree yield M distinct
itemsets whose utilities are higher than zero.

Lemma 10. Let SetNode = N1, N2, …, NM be an ordered set
containing all nodes in the UP-Tree (M  k). Let Ni be the i-
th node in SetNode and Ni.nu  Nj.nu > 0, i < j. If NU =
Nk.nu, then fHUI(D, *)  fHUI(D, NU).

Rationale. By Lemma 8, each path from a node Ni  SetNode
to the root R represents a unique itemset Ni, 1  i  M. Let
SetItemset = X1, X2, …, XM be an ordered set of itemsets
that are represented by the nodes in SetNode, where EU(Xi)
 EU(Xj) > 0, i < j. Let KH be the complete set of top-k
HUIs in the database D. If |KH|  k, then * = min{EU(X)
|XKH} (Definition 11). Because * = min{EU(X)|X KH}
 min{EU(Xi)|XiSetItemset, 1  i  k}  min{Ni.nu | Ni 
NodeSet, 1  i  k} = NU, we have *  NU and fHUI(D, *)
 fHUI(D, NU).

By Lemma 8, 9 and 10, if there are no less than k nodes

in the UP-Tree during its construction and the k-th high-

est node utility in the UP-Tree is higher than the current

min_utilBorder, min_utilBorder can be safely raised to the k-th

highest node utility in the UP-Tree.

Example 6. Let the notation N represents a node of the
UP-Tree such that  is the item stored in N. If k = 4, when
the first reorganized transaction T1’ = {(C,1), (A,1), (D,1)}
is inserted into the UP-Tree, the nodes N{C}, N{A} and N{D}
are created with node utilities 1, 6 and 8, which are re-
spectively lower bounds on the utilities of itemsets {C},
{AC} and {DAC}. When the second reorganized transac-
tion T2’ = {(C,6), (E,2), (A,2), (G,5)} is inserted into the UP-
Tree, there are more than four nodes in the tree. By Lem-
ma 10, min_utilBorder can be raised to the 4-th highest node
utility in the current UP-Tree.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2458860, IEEE Transactions on Knowledge and Data Engineering

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

Strategy 3 (NU: raising the threshold by Node Utilities).
The strategy NU is applied during the construction of the
UP-Tree (during the second database scan). If there are more
than k nodes in the current UP-Tree and the k-th highest
node utility value NUk-th is higher than min_utilBorder,
min_utilBorder can be raised to NUk-th. After inserting all reor-
ganized transactions, the size of the constructed UP-Tree can
be further reduced by pruning items whose TWU values are
less than min_utilBorder in the UP-Tree.

3.2.3 Raising the threshold by MIU values of
Descendents

The third strategy that we propose is called MD (rais-
ing the threshold by MIU values of Descendents). It is applied
after the construction of the UP-Tree and before the gen-
eration of PKHUIs.

Strategy 4 (MD: raising the threshold by MIU values of
Descendents). Let the notation N represents a node of the
UP-Tree such that  is the item stored in N. For each node
N under the root of UP-Tree, the algorithm traverses the
sub-tree under node N once to calculate the support count
of the itemset {} for every descendent node N of N. For
each itemset {}, the MIU value of {} is calculated. If
the k-th highest MIU value is higher than min_utilBorder,
min_utilBorder can be safely raised to that value.

Example 7. Consider the UP-Tree depicted in Fig. 2 and
suppose k = 4. The node under the root is N{C}. We tra-
verse the sub-tree under the node N{C} once and calculate
the MIU values of its descendents. For the descendent
N{A}, the total support count of {A} in the sub-tree of N{C} is
(1 + 2) = 3. Therefore, the MIU of {AC} is MIU({AC}) =
[miu({A}) + miu({C})]  SC({AC}) = [5+4]  3 = 27. Table 6
shows the MIU values of descendents of N{C}.

3.2.4 Raising the Threshold during Phase II

The fourth proposed strategy is called SE (raising the
threshold by Sorting and calculating Exact utility of candi-
dates), which is applied during the phase II of TKU.

Strategy 5 (SE: raising the threshold by Sorting and cal-
culating Exact utility of candidates). Let C be the set of
candidates produced in Phase I. Candidates in C are sorted
in descending order of their estimated utilities, i.e.,
min{ESTU(X), MAU(X)}. Thus, candidates with higher es-
timated utility values will be considered before those having
lower estimated utility values. During the phase II, if the
utility of a newly considered HUI X is larger than
min_utilBorder, X and EU(X) are inserted into a min-heap
structure named TopK-HUI-List. HUIs in TopK-HUI-List
are ordered by decreasing utility. Then, min_utilBorder is
raised to the utility of the k-th HUI in TopK-HUI-List, and
HUIs having a utility lower than min_utilBorder are removed
from TopK-HUI-List. If the estimated utility of the current
candidate Y, i.e., min{ESTU(Y), MAU(Y)}, is less than the
raised min_utilBorder, Y and the remaining candidates do not
need to be considered anymore because the upper bounds on
their utilities are less than min_utilBorder. When the algorithm
completes, TopK-HUI-List captures all the top-k HUIs in the
database.

TABLE 7.
TRANSACTIONS FOR CONSTRUCTING UTILITY-LISTS

TID Transaction
Transaction

Utility (TU)

T1 (D,1)(A,1)(C,1) 8

T2 (G,5)(A,2)(E,2)(C,6) 27

T3 (F,5)(D,6)(B,2)(A,1)(E,1)(C,1) 30

T4 (D,3)(B,4)(E,1)(C,3) 20

T5 (G,2)(B,2)(E,1)(C,2) 11

By this mechanism, itemsets with lower estimated util-

ity values may not be checked if the min_utilBorder has been
previously raised. Thus, the I/O cost and execution time
for Phase II can be further reduced.

4. The TKO Algorithm

The second algorithm that we propose is TKO (mining
Top-k utility itemsets in One phase). It can discover top-k
HUIs in only one phase. It utilizes the basic search proce-
dure of HUI-Miner and its utility-list structure [14].
Whenever an itemset is generated by TKO, its utility is
calculated by its utility-list without scanning the original
database. We first describe a basic version of TKO named
TKOBase and then the advanced version, which includes
several strategies to increase its efficiency.

4.1 Construction of Utility-list Structure

In this subsection, we briefly introduce the utility-list
structure and related properties. For details about utility-
lists, readers are referred to [14]. In the TKOBase and TKO
algorithms, each item(set) is associated with a utility-list.
The utility-lists of items are called initial utility-lists, which
can be constructed by scanning the database twice. In the
first database scan, the TWU and utility values of items
are calculated. During the second database scan, items in
each transaction are sorted in order of TWU values and
the utility-list of each item is constructed.

Table 7 shows an example database, where items in
each transaction are arranged in ascending order of TWU
values. Fig. 4 shows utility-lists of items for the database
in Table 7. The utility-list of an item(set) X consists of one
or more tuples. Each tuple represents the information of X
in a transaction Tr and has three fields: Tid, iutil and rutil.
Fields Tid and iutil respectively contains the identifier of
Tr and the utility of X in Tr. Field rutil indicates the re-
maining utility of X in Tr. The concept of remaining utility
is based on the following definitions.

Definition 17 (Precede and succeed). The ascending order
of TWU is a total order such that an item Ii precedes an item
Ij denoted as Ii ≺ Ij iff (1)TWU(Ii) < TWU(Ij) or (2) TWU(Ii)
= TWU(Ij) and Ii is smaller than Ij according to the lexico-
graphical order. If one of these conditions is not met, Ii is said
to succeed Ij (denoted as Ii ≻ Ij).

Definition 18 (Concatenation of an itemset). Let X={x1,
x2, …, xu} (xiI*, 1  i  u) and Y={y1, y2, …, yv} (yjI*, 1 
j  v) be itemsets, Y is a concatenation of X iff X Y and
each item yj  X succeeds all items in X.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2458860, IEEE Transactions on Knowledge and Data Engineering

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

Fig. 5. The pseudo code of TopK-HUI-Search

Case 1. If X = {x1} and Y = {y1} are 1-itemsets, where x1 ≺
y1. Let Z = XY = {x1, y1} be a 2-itemset obtained by con-
catenating X with y1. The utility-lists ul(X) and ul(Y) are
constructed during the initial database scans. The utility-
list of Z is obtained by the following process. For each
transaction Trg(X)g(Y), an element Tr, EU(Z, Tr), RU(Z,
Tr) is created in ul(Z), where EU(Z, Tr) is the sum of the
iutil values in elements associated with Tr in ul(X) and
ul(Y), and where RU(Z, Tr) is the rutil value associated
with Tr in ul(Y). In brief, EU(Z, Tr) = EU(x1, Tr) + EU(y1, Tr)
and RU(Z, Tr) = EU(y1, Tr).

Case 2. If X = { x1, x2, ..., xL-1} and Y = { y1, y2, ..., yL-1} are (L-
1)-itemsets (L  2), where xi = yi (1  i < L-1) and xL-1 ≺ yL-1.
Let Z = XY = {x1, x2, ..., xL-1, yL-1} be an L-itemset obtained
by concatenating X with yL. Let P = XY = {x1, x2, ..., xL-2}
be the common prefix of X and Y. Given the utility-lists
ul(X), ul(Y) and ul(P), the utility-list of Z is obtained by
the following process. For each transaction Trg(X)g(Y),
an element Tr, EU(Z, Tr), RU(Z, Tr) is created in ul(Z),
where EU(Z, Tr) is the sum of the iutil values in elements
associated with Tr in ul(X) and ul(Y) minus the iutil value
of the element associated with Tr in ul(P), and where
RU(Z, Tr) is the rutil value associated to Tr in ul(Y). In
brief, EU(Z, Tr) = [EU(X, Tr)+EU(Y, Tr)]-EU(P, Tr) and
RU(Z, Tr) = EU(Y, Tr).

4.3 The TKO Algorithm and Effective Strategies

We incorporate four strategies to improve the efficien-
cy of TKOBase. The resulting algorithm is named TKO. The
first two strategies are PE and DGU, which have been
previously presented in Section 3. The third and fourth
strategies are based on the following definitions and
properties.

Definition 23 (Z-element). An element is called Z-element iff
its rutil value is equal to zero. Otherwise, the element is
called NZ-element. The set of all Z-elements in the utility
list of X is denoted as ZE(X).

For example, the utility list of {DBC} consists of two Z-
elements ZE({DBC}) = {T3, 17, 0, T4, 17, 0}.

Property 6. Let NZEU(X) be the sum of iutil values of NZ-
elements of an itemset X. If [NZEU(X) + RU(X)] <
min_utilBorder, all the concatenations of X are not top-k HUIs.

Strategy 7 (RUZ: Reducing estimated utility values by
using Z-elements). The RUZ strategy is applied during
the generation of candidate itemsets in the TopK-HUI-
Search procedure. For any candidate X generated by the
TKO algorithm, it is not necessary to explore the search
space of concatenations of X if [NZEU(X) + RU(X)] is less
than min_utilBorder (Property 6). This strategy is achieved by
replacing Line 6 of Fig. 5 with the following code: If
[NZEU(X) + RU(X)]  .

Strategy 8 (EPB: Exploring the most Promising Branches
first). The EPB strategy aims at generating the candidate
itemsets with the highest utility first. The reason is that if
itemsets with higher utility are found earlier, TKO can raise
its min_utilBoarder higher and earlier to prune the search space.
Consider Lines 8-9 in Fig. 5, let Class[P] ={X1, X2, …, XM}
be the set of itemsets that share the same prefix P, where the
last item of Xi precedes that of Xj (1  i < j  M). For each
itemset Xj in Class[P], let R = {Xj+1, X_j+2, ..., XM} denotes
the itemsets in Class[P] whose last items precedes Xj. The
TKO algorithm processes itemsets in R one by one in de-
creasing order of their estimated utility value (i.e., the sum
of utility and remaining utility). The idea is to always try to
extend the itemset having the largest estimated utility value
first because it is more likely to generate itemsets having a
higher utility and thus to allow to raise min_utilBorder more
quickly for pruning the search space.

TABLE 8.
CHARACTERISTICS OF DATASETS

Dataset #Trans.
Avg. Length

of Trans.
#Items Type

Foodmart 4,141 4.4 1,559 Sparse

Retail 88,162 10.3 16,470 Sparse

Chainstore 1,112,949 7.2 46,086 Large

Mushroom 8,124 23 119 Dense

Chess 3,196 37 76 Dense

Accident 340,183 33.8 468 Dense

T12I8D100K 100,000 12 1,000 Sparse

TABLE 9.
STRATEGIES USED BY THE ALGORITHMS

Algorithm
Phase I

Phase

II

PE NU MD MC SE

TKU Y Y Y Y Y

TKUNoSE Y Y Y Y

TKUBase Y Y

PROCEDURE: TopK-HUI-Search

Input:

Results:

(1) u(P): utility-list for a prefix P;

(2) Class[P]: a set of itemsets w.r.t. the prefix P;

(3) ULS[P]: a set of utility-lists w.r.t.the prefix P;

(4) δ: border minimum utility threshold min_utilBorder;

(5) TopK-CI-List: a list for storing candidate itemsets;

(1) Use TopK-CI-List to capture all the top-k HUIs

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

For each X={x1, x2,…, xL}Class[P] do

{ If (SUM(X.iutils) ≥ δ)

{ //Raise min_utilBorder by the strategy RUC;

δ ← RUC(X, TopK-CI-List);

}

If (SUM(X.iutils) + SUM(X.rutils) ≥ δ)

{ Class[X] ← Ø ; ULS[X] ← Ø ;

For each Y = {y1, y2,…, yL}Class[P] | yL≻ xL do

{ Z ← X  Y;

ul(Z) ← Construct(ul(P), X, Y, ULS[P]);

Class[X] ← Class[X]  Z;

ULS[X] ← ULS[X]  ul(Z);

}

TopK-HUI-Search(X, ULS[X], Class[X], δ, TopK-CI-List);

}

}

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2458860, IEEE Transactions on Knowledge and Data Engineering

WU ET AL.: EFFICIENT ALGORITHMS FOR MINING TOP-K HIGH UTILITY ITEMSETS 11

Phase I Time

0.1

1

10

100

1000

10000

1 10 100 1000
K

T
im

e
(S

ec
.)

TKU TKU(Base) UP(Optimal)

Reached Threshold

0

5000

10000

15000

20000

25000

30000

1 10 100 1000

K

T
h

re
sh

o
ld

UP(Optimal)

TKU

TKU(Base)

 (a) Phase I time (b) Thresholds reached after phase I

Phase II Time

0

10

20

30

40

50

60

70

1 10 100 1000

K

T
im

e
(S

ec
.)

TKU

TKU(no SE)

TKU(Base)

UP(Optimal)

Total Time

1

10

100

1000

10000

100000

1 10 100 1000

K

T
im

e
(S

ec
.)

TKU

TKU(Base)

UP(Optimal)

(c) Phase II time (d) Total time

Fig. 6. Performance of the algorithms on Foodmart

Phase I Time

0

30

60

90

120

150

1 10 100 1000 5000

K

T
im

e
(S

ec
.)

TKU

TKU(Base)

UP(Optimal)

Reached Threshold

0

4000000

8000000

12000000

16000000

1 10 100 1000 5000

K

T
h
re

sh
o
ld

UP(Optimal)

TKU

TKU(Base)

 (a) Phase I time (b) Thresholds reached after phase I

Phase II Time

1

10

100

1000

10000

1 10 100 1000 5000

K

T
im

e
(S

ec
.)

TKU

TKU(no SE)

TKU(Base)

UP(Optimal)

Total Time

0

300

600

900

1200

1500

1 10 100 1000 5000

K

T
im

e
(S

ec
.)

TKU

TKU(Base)

UP(Optimal)

 (c) Phase II time (d) Total time

Fig. 7. Performance of the algorithms on Mushroom

Phase I Time

0

20

40

60

80

100

100 300 500 700 900
K

T
im

e
(S

ec
.)

TKU

UP(Optimal)

UP(Low)

Phase II Time

0

1500

3000

4500

6000

100 300 500 700 900

K

T
im

e
(S

ec
.)

TKU TKU(no SE)
UP(Optimal) UP(Low)

(a) Phase I time (b) Phase II time
Total Time

0

1000

2000

3000

4000

5000

6000

100 300 500 700 900

K

T
im

e
 (

S
e
c
.)

TKU

UP(Optimal)

UP(Low)

Number of Candidates

0

20000

40000

60000

80000

100 300 500 700 900
K

#
C

an
d

id
at

e

TKU(no SE)

TKU

UP(Optimal)

(c) Total time (d) Number of candidates checked

in Phase II

Fig. 8. Performance of the algorithms on Chainstore

TABLE 10.
NUMBER OF CANDIDATES

 Mushroom Foodmart

K TKU TKUBase TKU TKUBase

1 427 508,462 1,379 2,466,459

10 597,301 713,793 1,503 2,494,446

100 803,377 920,040 2,456 2,537,225

1,000 1,540,583 1,657,403 39,289 2,585,300

5. Performance Evaluation

In this section, we evaluate the performance of the
proposed algorithms. Experiments were performed on a
computer with a 3.40 GHz Intel Core Processor and 4 GB
of memory, running Windows 7. All the algorithms are
implemented in Java. Both synthetic and real datasets
were used in the experiments. Foodmart was acquired
from Microsoft FoodMart 2000 database [40]; Retail, Mu-
shroom, Chess and Accidents were obtained from the
FIMI Repository [39]; Chainstore, a large dataset, was
obtained from NU-MineBench 2.0 [18]. Foodmart and
Chainstore already contain unit profits and purchase
quantities. For other datasets, unit profits of items are
generated between 1 and 1,000 by using a log-normal dis-
tribution and quantities of items are generated randomly
between 1 and 5, as the settings of [25, 26, 27]. Synthetic
datasets were generated from the data generator in [1].
Table 8 shows characteristics of the datasets.

5.1 Performance Evaluation of TKUBase

and TKU

In this subsection, we compare the performance of
TKU with UP-Growth [25] (one of the current best two-
phase HUI mining algorithms). To evaluate the perfor-
mance of the proposed strategies, we prepared three ver-
sions of TKU that we respectively name TKU, TKUNoSE
and TKUBase as shown in Table 9. Because UP-Growth has
not been designed for mining top-k HUIs, it cannot be
directly compared with TKU. To compare them, we con-
sidered the scenario where users would choose the op-
timal parameters for UP-Growth to produce the same
amount of patterns as TKU (denoted as UP(Optimal))

5.1.1 Performance Evaluation on Sparse Datasets

Fig. 6 shows the results on Foodmart. In Fig. 6(a), the
runtime of TKU for phase I is closed to that of
UP(Optimal). TKUBase has the worst performance among
all the algorithms. Fig. 6(b) shows min_utilBorder values
reached by TKU and TKUBase after completing phase I, as
well as the optimal threshold values used by UP-Growth.
In Fig. 6(b), the min_utilBorder values reached by TKU are
closer to the optimal values than those reached by TKU-

Base. This behavior is explained by the fact that TKUBase
does not apply the strategies PE, NU and MD. Thus, it
constructs a full UP-Tree using min_utilborder = 0. Since rais-
ing the threshold for TKUBase strictly depends on the MC
strategy, its runtime is the longest. The ineffectiveness of
raising the threshold for TKUBase also influences the num-
ber of candidates generated in phase I. Table 10 shows the
number of candidates generated by the algorithms in
phase I. In Table 10, the number of candidates produced
by TKUBase is over 1,000 times larger than that of TKU
when k is less than 1,000.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2458860, IEEE Transactions on Knowledge and Data Engineering

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

(a) Mushroom
(b) Chess

(c) Accidents (d) Foodmart

(e) Retail (f) Chainstore

Fig. 9. Runtime of REPT, TKU and TKO

(a) Retail (b) Chainstore

Fig. 10. Memory consumption of REPT, TKU and TKO

(a) Varied number of items (b) Varied database sizes

Fig.11. Scalability of the algorithms under different settings

The reason is that strategies PE, NU and MD of TKU
effectively raise the threshold at different stages. Fig. 6(c).
shows the runtime of the algorithms for Phase II. The per-
formance of TKUNoSE is worse than TKU because the latter
uses the strategy SE, which reduces the number of candi-
dates that need to be checked in Phase II. Fig. 6(d) shows
the overall runtimes of the algorithms. TKU is over 100
times faster than TKUBase, and only about twice less than
UP(Optimal).

5.1.2 Performance Evaluation on Dense Datasets

Fig. 7(a) shows the runtime of the algorithms for phase
I. The runtime of TKU is close to that of TKUBase. This is
because for dense datasets the estimated utility values of
itemsets are much larger than their utilities. Thus the
thresholds cannot be raised effectively in phase I. Fig. 7(b)
shows the thresholds reached by the algorithms. In Fig.
7(b), when k is larger than 1, the thresholds reached by
TKU are close to that of TKUBase. Table 10 shows the num-
ber of candidates generated by the algorithms in phase I.

In Table 10, we see that less candidates are produced
by TKU than by TKUBase. Fig. 7(c) shows the runtime of
the algorithms for Phase II. The runtime of TKUNoSE is the
worst. This is because that, without using the SE strategy,
TKUNoSE needs to check all the candidates to determine
which itemsets are top-k HUIs. When k is set to 5,000, the
runtime of TKUNoSE is too long to be executed (over 10,000
seconds). Fig. 7(d) shows the total runtime of the algo-
rithms. In Fig. 7(d), TKU is still more efficient than TKU-

Base.

5.1.3 Performance Evaluation on Large Datasets

Fig. 8 shows the performance of the algorithms on a
very large dataset Chainstore. Because the runtime of
TKUBase on this dataset is very slow (e.g., over 24 hours
when k = 1), we instead use UP-Growth with a low mini-
mum utility threshold (0.01%) as the baseline (denoted as
UP(Low) in the experiments). The number of HUIs gen-
erated with min_util = 0.01% is about 3,800. Fig. 8(a)
shows the runtime of the algorithms for phase I. Since the
threshold of UP(Low) is fixed, its runtime remains the
same when k is varied. In Fig. 8(a), the runtime of TKU is
worse than UP(Low) when k > 200. The reason is that
TKU performs more operations to apply strategies to
raise the threshold step by step. Fig. 8(b) shows the run-
time for Phase II of the algorithms. In Fig. 8(b), TKU is
slightly slower than UP(Low). Fig. 8(c) shows the total
runtime of the algorithms. Globally, TKU is much faster
than UP(Low). This is because UP(Low) needs to check all
candidates in Phase II, whereas TKU only needs to check
some of them thanks to strategy SE. Fig. 8(d) shows the
number of candidates checked by the algorithms in Phase
II. Since TKUNoSE checks all candidates, its performance is
the worst. Besides, although TKU generates much more
candidates in phase I, the number of candidates that need
to be checked by TKU is close to that of UP(Optimal) in
Phase II. This is because TKU avoids checking some can-
didates by using the SE strategy.

0

200

400

600

800

1000

1200

1 10 100 1000 3000 5000

UP-Growth(Opt) TKU
HUI-Miner(Opt) TKO
REPT(N=100) REPT(N=10)

K

T
im

e
(s

ec
.)

0

200

400

600

800

1000

1200

1 10 100 1000 3000 5000

UP-Growth(Opt) TKU
HUI-Miner(Opt) TKO
REPT(N=100) REPT(N=10)

K

T
im

e
(s

ec
.)

10

100

1000

10000

100000

1 5 10 50 100 500

UP-Growth(Opt) TKU
HUI-Miner(Opt) TKO
REPT(N=100) REPT(N=10)

K

T
im

e
(s

ec
.)

0

20

40

60

80

1 10 100 1000 3000 5000

UP-Growth(Opt) TKU
HUI-Miner(Opt) TKO
REPT(N=100) REPT(N=10)

K

T
im

e
(s

ec
.)

100

1000

10000

2K 4K 6K 8K 10K

TKU TKO

REPT(N=1,000) RRPT(N=5,000)

Number of distinct items

T
im

e
(s

ec
.)

100

1000

10000

100K 200K 300K 400K 500K

TKU TKO

REPT(N=1,000) REPT(N=5,000)

T
im

e
(s

ec
.)

Database size

0

1000

2000

3000

4000

100 200 300 400 500 600 700 800 900 1000

TKU TKO

REPT(N=1,000) REPT(N=5,000)

K

M
em

o
ry

 U
sa

g
e(

M
B

.)

0

250

500

750

1000

1 10 100 1000 3000 5000

TKU TKO

REPT(N=1,000) REPT(N=5,000)

K

M
em

o
ry

 U
sa

g
e(

M
B

.)

0

200

400

600

800

1000

1200

1400

1600

1800

100 200 300 400 500 600 700 800 900 1000

UP-Growth(Opt) TKU
HUI-Miner(Opt) TKO
REPT(N=1,000) REPT(N=5,000)

K

T
im

e
(s

ec
.)

0

200

400

600

800

1 10 100 1000 3000 5000

UP-Growth(Opt) TKU
HUI-Miner(Opt) TKO
REPT(N=1,000) REPT(N=5,000)

K

T
im

e
(s

ec
.)

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2458860, IEEE Transactions on Knowledge and Data Engineering

WU ET AL.: EFFICIENT ALGORITHMS FOR MINING TOP-K HIGH UTILITY ITEMSETS 13

5.2 Performance Comparison of the REPT, TKU and
TKO Algorithms

In this subsection, we evaluate the performance of the
proposed algorithms TKU and TKO against REPT [21]
and two state-of-the-art HUI mining algorithms UP-
Growth [25] and HUI-Miner [14]. Here, HUI-Miner(Opt)
and UP-Growth(Opt) respectively represents HUI-Miner
and UP-Growth tuned with the optimal thresholds. Be-
sides, REPT with varied N=y (i.e., the parameter for the
RSD strategy [21]) is denoted as REPT(N=y).

5.2.1 Performance Comparison on Dense Datasets

Fig. 9(a), Fig. 9(b) and Fig. 9(c) show the runtime of the
algorithms on three dense datasets Mushroom, Chess and
Accidents with varied k respectively. In these figures,
TKO has the best performance among top-k HUI mining
algorithms. For example, on the Chess dataset, TKO only
spends 23 seconds to complete the mining process, while
REPT and TKU take more than 900 seconds. This is be-
cause TKO is a one-phase algorithm while TKU and REPT
are two-phase algorithms. Because dense datasets gener-
ally contain lots of long itemsets and transactions, TKU
and REPT tend to highly overestimate the upper bounds
on utilities of generated candidates. However, whenever
an itemset is produced by TKO, TKO immediately calcu-
lates its exact utility by the RUC and RUZ strategies,
which allows TKO to efficiently and effectively raise the
border thresholds. This avoids generating too many in-
termediate low utility or candidate itemsets during the
mining process. On the contrary, whenever a candidate is
generated by REPT or TKU in phase I, its exact utility is
unknown. Thus, REPT and TKU cannot effectively raise
the border minimum utility threshold and suffers from
very long runtimes on dense datasets.

5.2.2 Performance Comparison on Sparse Datasets

Fig. 9(d), Fig. 9(e) and Fig. 9(f) show the runtime of the
algorithms on three sparse datasets Foodmart, Retail and
Chainstore under varied k. In these figures, the one-phase
algorithm TKO generally has the best performance. For
two-phase algorithms, REPT runs slightly slower than
TKU when N is set to 10. When a smaller N is set for
REPT, the RSD strategy used in REPT cannot effectively
raise the border minimum utility threshold and thus it
produces more candidates and runs slower than TKU.
When N is set appropriately, REPT may run faster than
TKU. For example, on Retail dataset, when N is set to
1,000, REPT is faster than TKU. However, setting an ap-
propriate N for REPT may be difficult for users who are
not domain experts. Besides, the selection of N has major
influence on the performance of REPT, especially on large
datasets. For example, on the Chainstore dataset, when a
too large N (i.e., N=5,000) is set for REPT, REPT becomes
very inefficient because it spends a lot of time enumerat-
ing 2-itemsets consisting of promising items from each
transaction by using the RSD strategy. On the contrary,
when a too small N is set (i.e., N  1,000) for REPT, the
RSD strategy used in REPT cannot effectively raise the
threshold and causes REPT to suffer from a large number
of candidates and a long runtime for Phase II.

5.3 Memory Usage of the Algorithms

Fig. 10(a) and Fig. 10(b) respectively show the memory
usage of the algorithms on Retail and Chainstore. In Fig.
10, TKO generally uses less memory than TKU and REPT.
This is because TKU and REPT are two-phase algorithms.
When they could not effectively raise the border mini-
mum utility thresholds, they may consider too many can-
didates and local UP-Trees during the mining process,
which causes them to consume much more memory than
TKO. Besides, the memory consumption of
REPT(N=5,000) is higher than that of TKU. This is be-
cause REPT maintains not only a global UP-Tree in mem-
ory but also a RSD matrix. When there are many promis-
ing items and N is set too large for REPT, the RSD matrix
could be very large and make REPT uses more memory.

5.4 Scalability of the Algorithms under Different
Parameter Settings

Then, we test the scalability of the algorithms under
different parameter settings. In the experiments, k is set to
5,000. Fig. 11(a) shows the runtime of the algorithms on
T12I8D100KQ5 when the number of distinct items is va-
ried from 2K to 10K. Fig. 11(b) shows the runtime of the
algorithms on T12I8N1KQ5 when the database size is
varied from 100K to 500K. As shown in Fig. 11, the pro-
posed algorithms have good scalability under different
parameter settings.

6. Conclusion and Future Works

In this paper, we have studied the problem of top-k
high utility itemsets mining, where k is the desired number
of high utility itemsets to be mined. Two efficient algo-
rithms TKU (mining Top-K Utility itemsets) and TKO (min-
ing Top-K utility itemsets in One phase) are proposed for
mining such itemsets without setting minimum utility
thresholds. TKU is the first two-phase algorithm for min-
ing top-k high utility itemsets, which incorporates five
strategies PE, NU, MD, MC and SE to effectively raise the
border minimum utility thresholds and further prune the
search space. On the other hand, TKO is the first one-
phase algorithm developed for top-k HUI mining, which
integrates the novel strategies RUC, RUZ and EPB to
greatly improve its performance. Empirical evaluations
on different types of real and synthetic datasets show that
the proposed algorithms have good scalability on large
datasets and the performance of the proposed algorithms
is close to the optimal case of the state-of-the-art two-
phase and one-phase utility mining algorithms [14, 25].

Although we have proposed a new framework for top-
k HUI mining, it has not yet been incorporated with other
utility mining tasks to discover different types of top-k
high utility patterns such as top-k high utility episodes, top-k
closed+ high utility itemsets, top-k high utility web access pat-
terns and top-k mobile high utility sequential patterns. These
leave wide rooms for exploration as future work.

ACKNOWLEDGEMENTS
This work is supported in part by Ministry of Science and Tech-
nology, Taiwan, R.O.C. under grant 101-2221-E-006-255-MY3
and 103-2627-B-009-001, and by NSF through grant CNS-1115234,
and Google Research Award. 格式化: 字型: 8.5 點, 非粗體, 小型大

寫字

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2458860, IEEE Transactions on Knowledge and Data Engineering

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID

Reference

[1] R. Agrawal and R. Srikant, ―Fast Algorithms for Mining Association Rules,‖ in Proc.

of Int'l Conf. on Very Large Data Bases, pp. 487-499, 1994.

[2] C. Ahmed, S. Tanbeer, B. Jeong and Y. Lee, ―Efficient Tree Structures for High-
utility Pattern Mining in Incremental Databases,‖ IEEE Transactions on Knowledge
and Data Engineering, Vol. 21(12), pp. 1708-1721, 2009.

[3] K. Chuang, J. Huang and M. Chen, ―Mining Top-K Frequent Patterns in the Pres-
ence of the Memory Constraint,‖ The VLDB Journal, Vol. 17, pp. 1321-1344, 2008.

[4] R. Chan, Q. Yang and Y. Shen, ―Mining High-utility Itemsets,‖ in Proc. of IEEE Int'l

Conf. on Data Mining, pp. 19-26, 2003.

[5] P. Fournier-Viger, V. S Tseng, ―Mining Top-K Sequential Rules,‖ in Proc. of Int’l Conf.

on Advanced Data Mining and Applications, pp. 180-194, 2011.

[6] P. Fournier-Viger, C. Wu, V. S. Tseng, ―Mining Top-K Association Rules,‖ in Proc. of
Int’l Conf. on Canadian conference on Advances in Artificial Intelligence, pp. 61–73, 2012.

[7] P. Fournier-Viger, C. Wu, V. S. Tseng, ―Novel Concise Representations of High
Utility Itemsets Using Generator Patterns," in Proc. of Int’l. Conf. on Advanced Data
Mining and Applications and Lecture Notes in Computer Science, Vol. 8933, pp. 30-43,

2014.

[8] J. Han, J. Pei and Y. Yin, ―Mining Frequent Patterns without Candidate Genera-
tion,‖ in Proc. of ACM SIGMOD Int'l Conf. on Management of Data, pp. 1-12, 2000.

[9] J. Han, J. Wang, Y. Lu and P. Tzvetkov, ―Mining Top-K Frequent Closed Patterns
without Minimum Support,‖ in Proc. of IEEE Int'l Conf. on Data Mining, pp. 211-218,

2002.
[10] S. Krishnamoorthy, ―Pruning Strategies for Mining High Utility Itemsets,‖ Expert

Systems with Applications, pp. Vol. 42(5), pp. 2371-2381, 2015.

[11] C. Lin, T. Hong, G. Lan, J. Wong and W. Lin, ―Efficient Updating of Discovered
High-utility Itemsets for Transaction Deletion in Dynamic Databases,‖ Advanced
Engineering Informatics, Vol. 29(1), pp. 16-27, 2015.

[12] G. Lan, T. Hong, V. S. Tseng and S. Wang, ―Applying the Maximum Utility Meas-
ure in High Utility Sequential Pattern Mining,‖ Expert Systems with Applications, Vol.

41(11), pp. 5071-5081, 2014.

[13] Y. Liu, W. Liao, and A. Choudhary, ―A Fast High Utility Itemsets Mining Algo-
rithm,‖ in Proc. of the Utility-Based Data Mining Workshop, pp. 90-99, 2005.

[14] M. Liu and J. Qu, ―Mining High Utility Itemsets without Candidate Generation,‖ in
Proc. of ACM Int'l Conf. on Information and Knowledge Management, pp. 55-64, 2012.

[15] J. Liu, K. Wang and B. Fung, ―Direct Discovery of High Utility Itemsets without
Candidate Generation,‖ in Proc. of IEEE Int'l Conf. on Data Mining, pp. 984-989 , 2012.

[16] Y. Lin, C. Wu and V. S. Tseng, ―Mining High Utility Itemsets in Big Data,‖ in Proc. of

Int'l Conf. on Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 649-

661, 2015.

[17] Y. Li, J. Yeh and C. Chang, ―Isolated Items Discarding Strategy for Discovering
High-utility Itemsets,‖ Data & Knowledge Engineering, Vol. 64(1), pp. 198-217, 2008.

[18] J. Pisharath, Y. Liu, B. Ozisikyilmaz, R. Narayanan, W. K. Liao, A. Choudhary and

G. Memik, NU-MineBench version 2.0 dataset and technical report,
http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html

[19] G. Pyun and U. Yun, ―Mining Top-K Frequent Patterns with Combination Reduc-
ing Techniques, ―Applied Intelligence, Vol. 41(1), pp. 76-98, 2014.

[20] T. Quang, S. Oyanagi, and K. Yamazaki, ― ExMiner: An Efficient Algorithm for
Mining Top-K Frequent Patterns,‖ in Proc. of Int’l Conf. on Advanced Data Mining and
Applications, pp. 436 – 447, 2006.

[21] H. Ryang and U. Yun, ―Top-K High Utility Pattern Mining with Effective Thre-
shold Raising Strategies,‖ Knowledge-Based Systems, Vol. 76, pp. 109-126, 2015.

[22] H. Ryang, U Yun and K. Ryu, ―Discovering High Utility Itemsets with Multiple
Minimum Supports,‖ Intelligent Data Analysis, Vol. 18(6), pp. 1027-1047, 2014.

[23] B. Shie, H. Hsiao, V. S. Tseng and P. S. Yu, ―Mining High Utility Mobile Sequential
Patterns in Mobile Commerce Environments,‖ in Proc. of Int’l. Conf. on Database Sys-
tems for Advanced Applications and Lecture Notes in Computer Science, Vol. 6587, pp.

224-238, 2011.

[24] P. Tzvetkov, X. Yan and J. Han, ―TSP: Mining Top-K Closed Sequential Patterns,‖
Knowledge and Information System, Vol. 7(4), pp. 438-457, 2005.

[25] V. S. Tseng, C. Wu, B. Shie, and P. S. Yu, ―UP-Growth: An Efficient Algorithm for
High Utility Itemset Mining,‖ in Proc. of the ACM SIGKDD Int'l Conf. on Knowledge
Discovery and Data Mining, pp. 253–262, 2010.

[26] V. S. Tseng, C. Wu, P. Fournier-Viger, P. S. Yu, ―Efficient Algorithms for Mining the
Concise and Lossless Representation of High Utility Itemsets,‖ IEEE Transactions on
Knowledge and Data Engineering, Vol. 27(3), pp. 726-739, 2015.

[27] C. Wu, P. Fournier-Viger, P. S. Yu, and V. S. Tseng, ―Efficient Mining of a Concise
and Lossless Representation of High Utility Itemsets,‖ in Proc. of IEEE Int'l Conf. on

Data Mining, pp. 824-833, 2011.

[28] J. Wang and J. Han, ―TFP: An Efficient Algorithm for Mining Top-K Frequent
Closed Itemsets,‖ IEEE Transactions on Knowledge and Data Engineering, Vol. 17(5),

pp. 652-664, 2005.

[29] C. Wu, Y. Lin, P. S. Yu and V. S. Tseng, ―Mining High Utility Episodes in Complex
Event Sequences,‖ in Proc. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery
and Data Mining, pp.536-544, 2013.

[30] C. Wu, B. Shie, V. S. Tseng and P. S. Yu, ―Mining Top-K High Utility Itemsets,‖ in
Proc. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining, pp. 78–

86, 2012.

[31] H. Xiong, M. Brodie and S. Ma, ―TOP-COP: Mining TOP-K Strongly Correlated
Pairs in Large Databases,‖ in Proc. of IEEE Int'l Conf. on Data Mining, pp. 1162-1166,

2006.

[32] H. Xiong, P. Tan, V. Kumar, ―Mining Strong Affinity Association Patterns in Data
Sets with Skewed Support Distribution,‖ in Proc. of IEEE Int'l Conf. on Data Mining,

pp. 387-394, 2003.
[33] H. Xiong, P. Tan, V. Kumar, ―Hyperclique Pattern Discovery,‖ Data Mining and

Knowledge Discovery, Vol. 13(2), pp. 219-242, 2006.

[34] U. Yun, J. Kim, ―A Fast Perturbation Algorithm using Tree Structure for Privacy
Preserving Utility Mining,‖ Expert Systems with Applications, Vol. 42(3), pp. 1149-

1165, 2015.

[35] U. Yun, H. Ryang, ―Incremental High Utility Pattern Mining with Static and Dy-
namic Databases,‖ Applied Intelligence, Vol. 42(2), pp. 323-352, 2015.

[36] J. Yin, Z. Zheng, L. Cao, Y. Song and W. Wei, ―Mining Top-K High Utility Sequen-
tial Patterns,‖ in Proc. of IEEE Int'l Conf. on Data Mining, pp. 1259-1264, 2013.

[37] M. Zihayat and A. An, ―Mining Top-K High Utility Itemsets over Data Streams,‖
Information Sciences, Vol. 285 (20), pp. 138–161, 2014.

[38] S. Zhu, J. Wu, H. Xiong and G. Xia, ―Scaling Up Top-K Cosine Similarity Search,‖

Data & Knowledge Engineering, Vol. 70(1), pp. 60–83, 2011.

[39] Frequent Itemset Mining Implementations Repository, http://fimi.cs.helsinki.fi/

[40] FoodMart2000, Microsoft Developer Network (MSDN),

https://technet.microsoft.com/en-us/library/aa217032(v=sql.80).aspx

Vincent S. Tseng is currently a Professor at Department of

Computer Science in National Chiao Tung University.
Currently he also serves as the chair for IEEE Computational
Intelligence Society Tainan Chapter. He served as the
president of Taiwanese Association for Artificial Intelligence
during 2011-2012 and acted as the director for Institute of
Medical Informatics of National Cheng Kung University
(NCKU) during August 2008 and July 2011. During 2004 and

2007, he also served as the director for Informatics Center in NCKU Hospital.
Dr. Tseng has a wide variety of research interests covering data mining, big
data, biomedical informatics, multimedia databases, mobile and Web
technologies. He has published more than 300 research papers in referred
journals and international conferences as well as 15 patents held. He has been
on the editorial board of a number of journals including IEEE Transactions on
Knowledge and Data Engineering, IEEE Journal on Biomedical and Health
Informatics, ACM Transactions on Knowledge Discovery from Data, etc.

He has also served as chairs/program committee members for a number
of premier international conferences related to data engineering artificial
computational intelligence including KDD, ICDM, SDM, PAKDD, ICDE, CIKM,
IJCAI, etc. He is also the recipient of 2014 K. T. Li Breakthrough Award.

Cheng Wei Wu received the Ph.D. degree in Department of

Computer Science and Information Engineering from Nation-
al Cheng Kung University, Taiwan, in 2015. Currently, he is
hired as a post-doctoral researcher in College of Computer
Science, National Chiao Tung University, Taiwan. His re-
search interests include data mining, utility mining, pattern
discovery, machine learning and big data analytics.

Philippe Fournier-Viger is an assistant-professor at Univer-

sity of Moncton, Canada. He received the Ph.D. degree from
Cognitive Computer Science at the University of Quebec in
Montreal in 2010. His research interests include data mining,
e-learning, intelligent tutoring systems, knowledge represen-
tation and cognitive modeling. He is the author of the popular
SPMF data mining software.

Philip S. Yu received the B.S. Degree in E.E. from National

Taiwan University, the M.S. and Ph.D. degrees in E.E. from
Stanford University, and the M.B.A. degree from New York
University. He is a Professor in the Department of Computer
Science at the University of Illinois at Chicago and also holds
the Wexler Chair in Information Technology. He spent most
of his career at IBM Thomas J. Watson Research Center

and was manager of the Software Tools and Techniques
group. His research interests include data mining, database systems, and
privacy. Dr. Yu has published more than 560 papers in refereed journals and
conferences. He holds or has applied for more than 300 US patents. Dr. Yu is
a Fellow of the ACM and the IEEE. He is associate editors of ACM Transac-
tions on the Internet Technology and ACM Transactions on Knowledge Dis-
covery from Data. He is on the steering committee of the IEEE Conference on
Data Mining and was a member of the IEEE Data Engineering steering com-
mittee. He was the Editor-in-Chief of IEEE Transactions on Knowledge and
Data Engineering (2001-2004). He had received several IBM honors including
2 IBM Outstanding Innovation Awards, an Outstanding Technical Achievement
Award, 2 Research Division Awards and the 94th plateau of Invention

Achievement Awards. He was an IBM Master Inventor. Dr. Yu received a
Research Contributions Award from IEEE Intl. Conference on Data Mining in
2003 and also an IEEE Region 1 Award for "promoting and perpetuating nu-
merous new electrical engineering concepts" in 1999.

http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html
http://portal.acm.org/citation.cfm?id=1835839
http://portal.acm.org/citation.cfm?id=1835839
http://fimi.cs.helsinki.fi/

