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Item B C D E F G 

A 9 28 24 24 10 15 

B  17 14 18 0 6 

C   0 0 0 0 

D    0 0 0 

E     0 0 

F      0 

Fig. 3. Pre-evaluation matrix (PEM) 

3.2  The TKU Algorithm 

In this subsection, we propose four strategies to effec-
tively raise min_utilBorder during different stages of the 
mining process. The four strategies are incorporated in 
TKUBase to form the advanced TKU algorithm.  

3.2.1  Pre-evaluation Step 

Though TKUBase provides a way to mine top-k HUIs, 
min_utilBorder is set to 0 before the construction of the UP-
Tree. This results in the construction of a full UP-Tree in 
memory, which degrades the performance of the mining 
task. If min_utilBorder could be raised before the construc-
tion of the UP-Tree and prune more unpromising items 
[25] in transactions, the number of nodes maintained in 
memory could be reduced and the mining algorithm 
could achieve better performance. Based on this idea, we 
propose a strategy named PE (Pre-evaluation Step) to raise 
min_utilBorder during the first scan of the database.  

Strategy 2 (PE: Pre-Evaluation). The strategy PE uses a 
structure named Pre-Evaluation Matrix (PEM) to store 
lower bounds of the utilities of certain 2-itemsets. Each entry 
in PEM is denoted as PEM[x][y] and corresponds to the 
lower bound of EU({x, y}), where x, y  I*. Initially, each 
value in PEM is set to 0. When a transaction Tr = {I1, I2,…, 
IM} (Ij  I*, 1  i  M) is retrieved during the first database 
scan, the utility of {I1}  {Ii} (1 < i  M) in Tr is added to the 
value of the corresponding entry of PEM[I1][Ii] in PEM. Af-
ter scanning all the transactions, if the k-th highest value in 
PEM is higher than min_utilBorder, min_utilBorder can be 
raised to the k-th highest value in PEM. The space complexi-
ty of the strategy is O(|I*|2/2), where |I*| is the number of 
distinct items in the database. 

Example 5. Consider the database of Table 1. When T1 = 
{(A,1), (C,1), (D,1)} is retrieved, the corresponding entries 
PEM[A][C], PEM[A][D] are accumulated with EU({AC}, 
T1) = 6 and EU({AD}, T1) = 7.  The remaining transactions 
in the database are processed by the same procedure. Af-
ter that, if min_utilBorder is lower than the k-th highest value 
in PEM, min_utilBorder is set to the k-th highest value in 
PEM. Fig. 3 shows the value of each entry in PEM after 
scanning the database. If k = 4, the 4-th highest value in 
PEM is PEM[B][E] = 18. If min_utilBorder is less than this 
value, min_utilBorder is raised to 18. 

Notice that in TKUBase, the strategy DGU proposed in 
[25] cannot be applied, because min_utilBorder is set to 0 
before the construction of the UP-Tree. However, if we 
apply the strategy PE to raise min_utilBorder during the first 
database scan, DGU can be further applied to prune those 
items whose TWUs are less than min_utilBorder, which re-
duces the size of the UP-Tree and the number of candi-
dates produced in phase I. 

TABLE 6.  
MIU VALUES OF DESCENDENTS OF NODE N{C} 

Descendent N{E} N{A} N{B} N{D} N{G} N{F} 

SC 4 3 3 3 2 1 

MIU 16 18 15 9 3 6 

3.2.2  Raising the Threshold by Node Utilities 

We also propose a strategy called NU (raising the thre-
shold by Node Utilities), which is applied during the con-
struction of the UP-Tree. The strategy NU is developed 
based on the following lemmas.  

Lemma 8. Let PATH = N1, N2, …, NM, R be a path from a 
node N1 to the root R in UP-Tree and IiI* be the item name 
of Ni, 1  i  M. PATH = N1, N2, …, NM, R represents a 
unique itemset X = {I1, I2, …, IM} in the database. Besides, 
the node utility of N1 is a lower bound on the utility of X. 

Rationale. The UP-Tree is constructed by applying the strate-
gy DGN [25]. According to the rationale described in [25], 
the utility of the itemset X = {I1, I2, …, IM} is guaranteed to 
be higher than the node utility of N1. Therefore, N1.nu  
EU({I1, I2, …, IM}). 

Lemma 9. If there are M nodes in the UP-Tree, there are at 
least M distinct itemsets whose utilities are higher than 0.  

Rationale. By Lemma 8, each path from a node in the UP-Tree 
to the root forms a unique path, which represents a unique 
itemset whose utility is higher than zero in the database. 
Therefore, M distinct nodes in the UP-Tree yield M distinct 
itemsets whose utilities are higher than zero. 

Lemma 10. Let SetNode = N1, N2, …, NM be an ordered set 
containing all nodes in the UP-Tree (M  k). Let Ni be the i-
th node in SetNode and Ni.nu  Nj.nu > 0, i < j. If NU = 
Nk.nu, then fHUI(D, *)  fHUI(D, NU). 

Rationale. By Lemma 8, each path from a node Ni  SetNode 
to the root R represents a unique itemset Ni, 1  i  M. Let 
SetItemset = X1, X2, …, XM be an ordered set of itemsets 
that are represented by the nodes in SetNode, where EU(Xi) 
 EU(Xj) > 0, i < j. Let KH be the complete set of top-k 
HUIs in the database D. If |KH|  k, then * = min{EU(X) 
|XKH} (Definition 11). Because * = min{EU(X)|X KH} 
 min{EU(Xi)|XiSetItemset, 1  i  k}  min{Ni.nu | Ni  
NodeSet, 1  i  k} = NU, we have  *  NU and fHUI(D, *) 
  fHUI(D, NU). 

By Lemma 8, 9 and 10, if there are no less than k nodes 

in the UP-Tree during its construction and the k-th high-

est node utility in the UP-Tree is higher than the current 

min_utilBorder, min_utilBorder can be safely raised to the k-th 

highest node utility in the UP-Tree.  

Example 6. Let the notation N represents a node of the 
UP-Tree such that  is the item stored in N. If k = 4, when 
the first reorganized transaction T1’ = {(C,1), (A,1), (D,1)} 
is inserted into the UP-Tree, the nodes N{C}, N{A} and N{D} 
are created with node utilities 1, 6 and 8, which are re-
spectively lower bounds on the utilities of itemsets {C}, 
{AC} and {DAC}. When the second reorganized transac-
tion T2’ = {(C,6), (E,2), (A,2), (G,5)} is inserted into the UP-
Tree, there are more than four nodes in the tree. By Lem-
ma 10, min_utilBorder can be raised to the 4-th highest node 
utility in the current UP-Tree.  
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Strategy 3 (NU: raising the threshold by Node Utilities). 
The strategy NU is applied during the construction of the 
UP-Tree (during the second database scan). If there are more 
than k nodes in the current UP-Tree and the k-th highest 
node utility value NUk-th is higher than min_utilBorder, 
min_utilBorder can be raised to NUk-th. After inserting all reor-
ganized transactions, the size of the constructed UP-Tree can 
be further reduced by pruning items whose TWU values are 
less than min_utilBorder in the UP-Tree.  

3.2.3 Raising the threshold by MIU values of 
Descendents 

The third strategy that we propose is called MD (rais-
ing the threshold by MIU values of Descendents). It is applied 
after the construction of the UP-Tree and before the gen-
eration of PKHUIs.  

Strategy 4 (MD: raising the threshold by MIU values of 
Descendents). Let the notation N represents a node of the 
UP-Tree such that  is the item stored in N. For each node 
N under the root of UP-Tree, the algorithm traverses the 
sub-tree under node N once to calculate the support count 
of the itemset {} for every descendent node N of N. For 
each itemset {}, the MIU value of {} is calculated. If 
the k-th highest MIU value is higher than min_utilBorder, 
min_utilBorder can be safely raised to that value. 

Example 7. Consider the UP-Tree depicted in Fig. 2 and 
suppose k = 4. The node under the root is N{C}. We tra-
verse the sub-tree under the node N{C} once and calculate 
the MIU values of its descendents. For the descendent 
N{A}, the total support count of {A} in the sub-tree of N{C} is 
(1 + 2) = 3. Therefore, the MIU of {AC} is MIU({AC}) = 
[miu({A}) + miu({C})]  SC({AC}) = [5+4]  3 = 27. Table 6 
shows the MIU values of descendents of N{C}.  

3.2.4  Raising the Threshold during Phase II 

The fourth proposed strategy is called SE (raising the 
threshold by Sorting and calculating Exact utility of candi-
dates), which is  applied during the phase II of TKU.  

Strategy 5 (SE: raising the threshold by Sorting and cal-
culating Exact utility of candidates).  Let C be the set of 
candidates produced in Phase I. Candidates in C are sorted 
in descending order of their estimated utilities, i.e., 
min{ESTU(X), MAU(X)}.  Thus, candidates with higher es-
timated utility values will be considered before those having 
lower estimated utility values. During the phase II, if the 
utility of a newly considered HUI X is larger than 
min_utilBorder, X and EU(X) are inserted into a min-heap 
structure named TopK-HUI-List. HUIs in TopK-HUI-List 
are ordered by decreasing utility. Then, min_utilBorder is 
raised to the utility of the k-th HUI in TopK-HUI-List, and 
HUIs having a utility lower than min_utilBorder are removed 
from TopK-HUI-List. If the estimated utility of the current 
candidate Y, i.e., min{ESTU(Y), MAU(Y)}, is less than the 
raised min_utilBorder, Y and the remaining candidates do not 
need to be considered anymore because the upper bounds on 
their utilities are less than min_utilBorder. When the algorithm 
completes, TopK-HUI-List captures all the top-k HUIs in the 
database. 

TABLE 7.  
TRANSACTIONS FOR CONSTRUCTING UTILITY-LISTS 

TID Transaction 
Transaction  

Utility (TU) 

T1 (D,1)(A,1)(C,1)  8 

T2 (G,5)(A,2)(E,2)(C,6) 27 

T3 (F,5)(D,6)(B,2)(A,1)(E,1)(C,1)  30 

T4 (D,3)(B,4)(E,1)(C,3)  20 

T5 (G,2)(B,2)(E,1)(C,2) 11 

 
By this mechanism, itemsets with lower estimated util-

ity values may not be checked if the min_utilBorder has been 
previously raised. Thus, the I/O cost and execution time 
for Phase II can be further reduced. 

4.  The TKO Algorithm 

The second algorithm that we propose is TKO (mining 
Top-k utility itemsets in One phase). It can discover top-k 
HUIs in only one phase. It utilizes the basic search proce-
dure of HUI-Miner and its utility-list structure [14]. 
Whenever an itemset is generated by TKO, its utility is 
calculated by its utility-list without scanning the original 
database. We first describe a basic version of TKO named 
TKOBase and then the advanced version, which includes 
several strategies to increase its efficiency. 

4.1  Construction of Utility-list Structure 

In this subsection, we briefly introduce the utility-list 
structure and related properties. For details about utility-
lists, readers are referred to [14]. In the TKOBase and TKO 
algorithms, each item(set) is associated with a utility-list. 
The utility-lists of items are called initial utility-lists, which 
can be constructed by scanning the database twice. In the 
first database scan, the TWU and utility values of items 
are calculated. During the second database scan, items in 
each transaction are sorted in order of TWU values and 
the utility-list of each item is constructed.  

Table 7 shows an example database, where items in 
each transaction are arranged in ascending order of TWU 
values. Fig. 4 shows utility-lists of items for the database 
in Table 7. The utility-list of an item(set) X consists of one 
or more tuples. Each tuple represents the information of X 
in a transaction Tr and has three fields: Tid, iutil and rutil. 
Fields Tid and iutil respectively contains the identifier of 
Tr and the utility of X in Tr. Field rutil indicates the re-
maining utility of X in Tr. The concept of remaining utility 
is based on the following definitions.  

Definition 17 (Precede and succeed). The ascending order 
of TWU is a total order such that an item Ii precedes an item 
Ij denoted as Ii ≺ Ij iff (1)TWU(Ii) < TWU(Ij) or (2) TWU(Ii) 
= TWU(Ij) and Ii is smaller than Ij according to the lexico-
graphical order. If one of these conditions is not met, Ii is said 
to succeed Ij (denoted as Ii ≻ Ij). 

Definition 18 (Concatenation of an itemset). Let X={x1, 
x2, …, xu} (xiI*, 1  i  u) and Y={y1, y2, …, yv} (yjI*, 1  
j  v) be itemsets, Y is a concatenation of X iff X Y and 
each item yj  X succeeds all items in X.  
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Fig. 5. The pseudo code of TopK-HUI-Search 

 
Case 1. If X = {x1} and Y = {y1} are 1-itemsets, where x1 ≺ 
y1. Let Z = XY = {x1, y1} be a 2-itemset obtained by con-
catenating X with y1. The utility-lists ul(X) and ul(Y) are 
constructed during the initial database scans. The utility-
list of Z is obtained by the following process. For each 
transaction Trg(X)g(Y), an element Tr, EU(Z, Tr), RU(Z, 
Tr) is created in ul(Z), where EU(Z, Tr) is the sum of the 
iutil values in elements associated with Tr in ul(X) and 
ul(Y), and where RU(Z, Tr) is the rutil value associated 
with Tr in ul(Y). In brief, EU(Z, Tr) = EU(x1, Tr) + EU(y1, Tr) 
and RU(Z, Tr) = EU(y1, Tr). 
 
Case 2. If X = { x1, x2, ..., xL-1} and Y = { y1, y2, ..., yL-1} are (L-
1)-itemsets (L  2), where xi = yi (1  i < L-1) and xL-1 ≺ yL-1. 
Let Z = XY = {x1, x2, ..., xL-1, yL-1} be an L-itemset obtained 
by concatenating X with yL. Let P = XY = {x1, x2, ..., xL-2} 
be the common prefix of X and Y. Given the utility-lists 
ul(X), ul(Y) and ul(P), the utility-list of Z is obtained by 
the following process. For each transaction Trg(X)g(Y), 
an element Tr, EU(Z, Tr), RU(Z, Tr) is created in ul(Z), 
where EU(Z, Tr) is the sum of the iutil values in elements 
associated with Tr in ul(X) and ul(Y) minus the iutil value 
of the element associated with Tr in ul(P), and where 
RU(Z, Tr) is the rutil value associated to Tr in ul(Y). In 
brief, EU(Z, Tr) = [EU(X, Tr)+EU(Y, Tr)]-EU(P, Tr) and 
RU(Z, Tr) = EU(Y, Tr). 

4.3  The TKO Algorithm and Effective Strategies 

We incorporate four strategies to improve the efficien-
cy of TKOBase. The resulting algorithm is named TKO. The 
first two strategies are PE and DGU, which have been 
previously presented in Section 3. The third and fourth 
strategies are based on the following definitions and 
properties.   

 

Definition 23 (Z-element). An element is called Z-element iff 
its rutil value is equal to zero. Otherwise, the element is 
called NZ-element. The set of all Z-elements in the utility 
list of X is denoted as ZE(X).  

For example, the utility list of {DBC} consists of two Z-
elements ZE({DBC}) = {T3, 17, 0, T4, 17, 0}. 

Property 6. Let NZEU(X) be the sum of iutil values of NZ-
elements of an itemset X. If [NZEU(X) + RU(X)] < 
min_utilBorder, all the concatenations of X are not top-k HUIs.   

Strategy 7 (RUZ: Reducing estimated utility values by 
using Z-elements). The RUZ strategy is applied during 
the generation of candidate itemsets in the TopK-HUI-
Search procedure. For any candidate X generated by the 
TKO algorithm, it is not necessary to explore the search 
space of concatenations of X if [NZEU(X) + RU(X)] is less 
than min_utilBorder (Property 6). This strategy is achieved by 
replacing Line 6 of Fig. 5 with the following code: If 
[NZEU(X) + RU(X)]  . 

Strategy 8 (EPB: Exploring the most Promising Branches 
first). The EPB strategy aims at generating the candidate 
itemsets with the highest utility first. The reason is that if 
itemsets with higher utility are found earlier, TKO can raise 
its min_utilBoarder higher and earlier to prune the search space. 
Consider Lines 8-9 in Fig. 5, let Class[P] ={X1, X2, …, XM} 
be the set of itemsets that share the same prefix P, where the 
last item of Xi precedes that of Xj (1  i < j  M). For each 
itemset Xj in Class[P], let R = {Xj+1, X_j+2, ..., XM} denotes   
the itemsets in Class[P] whose last items precedes Xj. The 
TKO algorithm processes itemsets in R one by one in de-
creasing order of their estimated utility value (i.e., the sum 
of utility and remaining utility). The idea is to always try to 
extend the itemset having the largest estimated utility value 
first because it is more likely to generate itemsets having a 
higher utility and thus to allow to raise min_utilBorder more 
quickly for pruning the search space.  

 

TABLE 8.  
CHARACTERISTICS OF DATASETS 

Dataset #Trans. 
Avg. Length  

of Trans. 
#Items  Type 

Foodmart 4,141 4.4 1,559 Sparse 

Retail 88,162 10.3 16,470 Sparse 

Chainstore 1,112,949 7.2 46,086 Large 

Mushroom 8,124 23 119 Dense 

Chess 3,196 37 76 Dense 

Accident 340,183 33.8 468 Dense 

T12I8D100K 100,000 12 1,000 Sparse 

TABLE 9.  
STRATEGIES USED BY THE ALGORITHMS 

Algorithm 
Phase I 

Phase 

II 

PE NU MD MC SE 

TKU Y Y Y Y Y 

TKUNoSE Y Y Y Y  

TKUBase    Y Y 
 

  

PROCEDURE: TopK-HUI-Search

Input:

Results:

(1) u(P): utility-list for a prefix P;

(2) Class[P]: a set of itemsets w.r.t. the prefix P;

(3) ULS[P]: a set of utility-lists w.r.t.the prefix P;

(4) δ: border minimum utility threshold min_utilBorder;

(5) TopK-CI-List: a list for storing candidate itemsets;

(1) Use TopK-CI-List to capture all the top-k HUIs

01.   

02.   

03.   

04.   

05.   

06.   

07.   

08.   

09.

10.

11.

12.

13.

14.

15.

16.

For each X={x1, x2,…, xL}Class[P] do

{   If (SUM(X.iutils) ≥ δ)

{   //Raise min_utilBorder by the strategy RUC;

δ ← RUC(X, TopK-CI-List);

}

If (SUM(X.iutils) + SUM(X.rutils) ≥ δ)

{   Class[X] ← Ø ; ULS[X] ← Ø ; 

For each Y = {y1, y2,…, yL}Class[P] | yL≻ xL do

{   Z ← X  Y;

ul(Z) ← Construct(ul(P), X, Y, ULS[P]);

Class[X] ← Class[X]  Z;

ULS[X] ← ULS[X]  ul(Z);

}

TopK-HUI-Search(X, ULS[X], Class[X], δ, TopK-CI-List);

}

}
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Fig. 6. Performance of the algorithms on Foodmart 
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Fig. 7. Performance of the algorithms on Mushroom 
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Fig. 8. Performance of the algorithms on Chainstore 

TABLE 10.  
NUMBER OF CANDIDATES  

 Mushroom Foodmart 

K TKU TKUBase TKU TKUBase 

1 427 508,462 1,379 2,466,459 

10 597,301 713,793 1,503 2,494,446 

100 803,377 920,040 2,456 2,537,225 

1,000 1,540,583 1,657,403 39,289 2,585,300 

5.  Performance Evaluation 

In this section, we evaluate the performance of the 
proposed algorithms. Experiments were performed on a 
computer with a 3.40 GHz Intel Core Processor and 4 GB 
of memory, running Windows 7. All the algorithms are 
implemented in Java. Both synthetic and real datasets 
were used in the experiments. Foodmart was acquired 
from Microsoft FoodMart 2000 database [40]; Retail, Mu-
shroom, Chess and Accidents were obtained from the 
FIMI Repository [39]; Chainstore, a large dataset, was 
obtained from NU-MineBench 2.0 [18]. Foodmart and 
Chainstore already contain unit profits and purchase 
quantities. For other datasets, unit profits of items are 
generated between 1 and 1,000 by using a log-normal dis-
tribution and quantities of items are generated randomly 
between 1 and 5, as the settings of [25, 26, 27]. Synthetic 
datasets were generated from the data generator in [1]. 
Table 8 shows characteristics of the datasets. 

5.1 Performance Evaluation of TKUBase
 
and TKU

 

In this subsection, we compare the performance of 
TKU with UP-Growth [25] (one of the current best two-
phase HUI mining algorithms). To evaluate the perfor-
mance of the proposed strategies, we prepared three ver-
sions of TKU that we respectively name TKU, TKUNoSE 
and TKUBase as shown in Table 9. Because UP-Growth has 
not been designed for mining top-k HUIs, it cannot be 
directly compared with TKU. To compare them, we con-
sidered the scenario where users would choose the op-
timal parameters for UP-Growth to produce the same 
amount of patterns as TKU (denoted as UP(Optimal)) 

5.1.1  Performance Evaluation on Sparse Datasets 

Fig. 6 shows the results on Foodmart. In Fig. 6(a), the 
runtime of TKU for phase I is closed to that of 
UP(Optimal). TKUBase has the worst performance among 
all the algorithms. Fig. 6(b) shows min_utilBorder values 
reached by TKU and TKUBase after completing phase I, as 
well as the optimal threshold values used by UP-Growth. 
In Fig. 6(b), the min_utilBorder values reached by TKU are 
closer to the optimal values than those reached by TKU-

Base. This behavior is explained by the fact that TKUBase 
does not apply the strategies PE, NU and MD. Thus, it 
constructs a full UP-Tree using min_utilborder = 0. Since rais-
ing the threshold for TKUBase strictly depends on the MC 
strategy, its runtime is the longest. The ineffectiveness of 
raising the threshold for TKUBase also influences the num-
ber of candidates generated in phase I. Table 10 shows the 
number of candidates generated by the algorithms in 
phase I. In Table 10, the number of candidates produced 
by TKUBase is over 1,000 times larger than that of TKU 
when k is less than 1,000.  
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(a) Mushroom 
(b) Chess 

(c) Accidents (d) Foodmart 

(e) Retail (f) Chainstore 

Fig. 9. Runtime of REPT, TKU and TKO 

(a) Retail (b) Chainstore 

Fig. 10. Memory consumption of REPT, TKU and TKO 

(a) Varied number of items (b) Varied database sizes 

Fig.11. Scalability of the algorithms under different settings 

 
 

The reason is that strategies PE, NU and MD of TKU 
effectively raise the threshold at different stages. Fig. 6(c). 
shows the runtime of the algorithms for Phase II. The per-
formance of TKUNoSE is worse than TKU because the latter 
uses the strategy SE, which reduces the number of candi-
dates that need to be checked in Phase II. Fig. 6(d) shows 
the overall runtimes of the algorithms. TKU is over 100 
times faster than TKUBase, and only about twice less than 
UP(Optimal).  

5.1.2 Performance Evaluation on Dense Datasets 

Fig. 7(a) shows the runtime of the algorithms for phase 
I. The runtime of TKU is close to that of TKUBase. This is 
because for dense datasets the estimated utility values of 
itemsets are much larger than their utilities. Thus the 
thresholds cannot be raised effectively in phase I. Fig. 7(b) 
shows the thresholds reached by the algorithms. In Fig. 
7(b), when k is larger than 1, the thresholds reached by 
TKU are close to that of TKUBase. Table 10 shows the num-
ber of candidates generated by the algorithms in phase I.  

In Table 10, we see that less candidates are produced 
by TKU than by TKUBase. Fig. 7(c) shows the runtime of 
the algorithms for Phase II. The runtime of TKUNoSE is the 
worst. This is because that, without using the SE strategy, 
TKUNoSE needs to check all the candidates to determine 
which itemsets are top-k HUIs. When k is set to 5,000, the 
runtime of TKUNoSE is too long to be executed (over 10,000 
seconds). Fig. 7(d) shows the total runtime of the algo-
rithms. In Fig. 7(d), TKU is still more efficient than TKU-

Base. 

5.1.3 Performance Evaluation on Large Datasets 

Fig. 8 shows the performance of the algorithms on a 
very large dataset Chainstore. Because the runtime of 
TKUBase on this dataset is very slow (e.g., over 24 hours 
when k = 1), we instead use UP-Growth with a low mini-
mum utility threshold (0.01%) as the baseline (denoted as 
UP(Low) in the experiments). The number of HUIs gen-
erated with min_util = 0.01% is about 3,800. Fig. 8(a) 
shows the runtime of the algorithms for phase I. Since the 
threshold of UP(Low) is fixed, its runtime remains the 
same when k is varied. In Fig. 8(a), the runtime of TKU is 
worse than UP(Low) when k > 200. The reason is that 
TKU performs more operations to apply strategies to 
raise the threshold step by step. Fig. 8(b) shows the run-
time for Phase II of the algorithms. In Fig. 8(b), TKU is 
slightly slower than UP(Low). Fig. 8(c) shows the total 
runtime of the algorithms. Globally, TKU is much faster 
than UP(Low). This is because UP(Low) needs to check all 
candidates in Phase II, whereas TKU only needs to check 
some of them thanks to strategy SE. Fig. 8(d) shows the 
number of candidates checked by the algorithms in Phase 
II. Since TKUNoSE checks all candidates, its performance is 
the worst. Besides, although TKU generates much more 
candidates in phase I, the number of candidates that need 
to be checked by TKU is close to that of UP(Optimal) in 
Phase II. This is because TKU avoids checking some can-
didates by using the SE strategy.  
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5.2 Performance Comparison of the REPT, TKU and 
TKO Algorithms 

In this subsection, we evaluate the performance of the 
proposed algorithms TKU and TKO against REPT [21] 
and two state-of-the-art HUI mining algorithms UP-
Growth [25] and HUI-Miner [14]. Here, HUI-Miner(Opt) 
and UP-Growth(Opt) respectively represents HUI-Miner 
and UP-Growth tuned with the optimal thresholds. Be-
sides, REPT with varied N=y (i.e., the parameter for the 
RSD strategy [21]) is denoted as REPT(N=y). 

5.2.1 Performance Comparison on Dense Datasets 

Fig. 9(a), Fig. 9(b) and Fig. 9(c) show the runtime of the 
algorithms on three dense datasets Mushroom, Chess and 
Accidents with varied k respectively. In these figures, 
TKO has the best performance among top-k HUI mining 
algorithms. For example, on the Chess dataset, TKO only 
spends 23 seconds to complete the mining process, while 
REPT and TKU take more than 900 seconds. This is be-
cause TKO is a one-phase algorithm while TKU and REPT 
are two-phase algorithms. Because dense datasets gener-
ally contain lots of long itemsets and transactions, TKU 
and REPT tend to highly overestimate the upper bounds 
on utilities of generated candidates.  However, whenever 
an itemset is produced by TKO, TKO immediately calcu-
lates its exact utility by the RUC and RUZ strategies, 
which allows TKO to efficiently and effectively raise the 
border thresholds. This avoids generating too many in-
termediate low utility or candidate itemsets during the 
mining process. On the contrary, whenever a candidate is 
generated by REPT or TKU in phase I, its exact utility is 
unknown. Thus, REPT and TKU cannot effectively raise 
the border minimum utility threshold and suffers from 
very long runtimes on dense datasets. 

5.2.2 Performance Comparison on Sparse Datasets 

Fig. 9(d), Fig. 9(e) and Fig. 9(f) show the runtime of the 
algorithms on three sparse datasets Foodmart, Retail and 
Chainstore under varied k. In these figures, the one-phase 
algorithm TKO generally has the best performance. For 
two-phase algorithms, REPT runs slightly slower than 
TKU when N is set to 10. When a smaller N is set for 
REPT, the RSD strategy used in REPT cannot effectively 
raise the border minimum utility threshold and thus it 
produces more candidates and runs slower than TKU. 
When N is set appropriately, REPT may run faster than 
TKU. For example, on Retail dataset, when N is set to 
1,000, REPT is faster than TKU. However, setting an ap-
propriate N for REPT may be difficult for users who are 
not domain experts. Besides, the selection of N has major 
influence on the performance of REPT, especially on large 
datasets. For example, on the Chainstore dataset, when a 
too large N (i.e., N=5,000) is set for REPT, REPT becomes 
very inefficient because it spends a lot of time enumerat-
ing 2-itemsets consisting of promising items from each 
transaction by using the RSD strategy. On the contrary, 
when a too small N is set (i.e., N  1,000) for REPT, the 
RSD strategy used in REPT cannot effectively raise the 
threshold and causes REPT to suffer from a large number 
of candidates and a long runtime for Phase II.  

5.3 Memory Usage of the Algorithms 

Fig. 10(a) and Fig. 10(b) respectively show the memory 
usage of the algorithms on Retail and Chainstore. In Fig. 
10, TKO generally uses less memory than TKU and REPT. 
This is because TKU and REPT are two-phase algorithms. 
When they could not effectively raise the border mini-
mum utility thresholds, they may consider too many can-
didates and local UP-Trees during the mining process, 
which causes them to consume much more memory than 
TKO. Besides, the memory consumption of 
REPT(N=5,000) is higher than that of TKU. This is be-
cause REPT maintains not only a global UP-Tree in mem-
ory but also a RSD matrix. When there are many promis-
ing items and N is set too large for REPT, the RSD matrix 
could be very large and make REPT uses more memory.  

5.4 Scalability of the Algorithms under Different 
Parameter Settings 

Then, we test the scalability of the algorithms under 
different parameter settings. In the experiments, k is set to 
5,000. Fig. 11(a) shows the runtime of the algorithms on 
T12I8D100KQ5 when the number of distinct items is va-
ried from 2K to 10K. Fig. 11(b) shows the runtime of the 
algorithms on T12I8N1KQ5 when the database size is 
varied from 100K to 500K. As shown in Fig. 11, the pro-
posed algorithms have good scalability under different 
parameter settings. 

6. Conclusion and Future Works 

In this paper, we have studied the problem of top-k 
high utility itemsets mining, where k is the desired number 
of high utility itemsets to be mined. Two efficient algo-
rithms TKU (mining Top-K Utility itemsets) and TKO (min-
ing Top-K utility itemsets in One phase) are proposed for 
mining such itemsets without setting minimum utility 
thresholds. TKU is the first two-phase algorithm for min-
ing top-k high utility itemsets, which incorporates five 
strategies PE, NU, MD, MC and SE to effectively raise the 
border minimum utility thresholds and further prune the 
search space. On the other hand, TKO is the first one-
phase algorithm developed for top-k HUI mining, which 
integrates the novel strategies RUC, RUZ and EPB to 
greatly improve its performance. Empirical evaluations 
on different types of real and synthetic datasets show that 
the proposed algorithms have good scalability on large 
datasets and the performance of the proposed algorithms 
is close to the optimal case of the state-of-the-art two-
phase and one-phase utility mining algorithms [14, 25].  

Although we have proposed a new framework for top-
k HUI mining, it has not yet been incorporated with other 
utility mining tasks to discover different types of top-k 
high utility patterns such as top-k high utility episodes, top-k 
closed+ high utility itemsets, top-k high utility web access pat-
terns and top-k mobile high utility sequential patterns. These 
leave wide rooms for exploration as future work.  
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